Skip to main content

2022 | OriginalPaper | Buchkapitel

Disturbance Observer Compensation Based on Sliding-Mode Approach for Solving Compliant Actuator Tracking Control Problems

verfasst von : Changxian Xu, Jian Gu, Yongbai Liu, Liming Zhao, Zhongbo Sun

Erschienen in: Intelligent Robotics and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rehabilitation robot needs directly physical interaction in the process of rehabilitation training for patients. Considering the safety of patients, the actuator of the rehabilitation robot should have the advantages of flexibility. Based on the requires of rehabilitation robots, an accurate dynamics model is considered the interaction force between the parts of the compliant actuator, which is established, and the control scheme of the compliant actuator end trajectory tracking is designed. The disturbance observer is designed to estimate the disturbance value and actively eliminate the influence of some disturbances on the compliant actuator. A nonlinear sliding mode controller is designed to reduce the tracking error and shaking the compliant actuator. Through the simulation experiments, compared with the traditional proportional-integral-derivative (PID) controller, it is obvious that the tracking effect of sliding mode control is more efficient on the basis of using the disturbance observer to dispose the disturbance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhou, J., Li, Z., Li, X., et al.: Human-robot cooperation control based on trajectory deformation algorithm for a lower limb rehabilitation robot. IEEE/ASME Trans. Mechatron. 26(6), 3128–3138 (2021)CrossRef Zhou, J., Li, Z., Li, X., et al.: Human-robot cooperation control based on trajectory deformation algorithm for a lower limb rehabilitation robot. IEEE/ASME Trans. Mechatron. 26(6), 3128–3138 (2021)CrossRef
2.
Zurück zum Zitat Aguirre-Ollinger, G., Yu, H.: Lower-limb exoskeleton with variable-structure series elastic actuators: phase-synchronized force control for gait asymmetry correction. IEEE Trans. Robot. 37(3), 763–779 (2021)CrossRef Aguirre-Ollinger, G., Yu, H.: Lower-limb exoskeleton with variable-structure series elastic actuators: phase-synchronized force control for gait asymmetry correction. IEEE Trans. Robot. 37(3), 763–779 (2021)CrossRef
3.
Zurück zum Zitat Wang, S., Wang, L., Meijneke, C., et al.: Design and control of the MINDWALKER exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 277–286 (2015)CrossRef Wang, S., Wang, L., Meijneke, C., et al.: Design and control of the MINDWALKER exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 23(2), 277–286 (2015)CrossRef
4.
Zurück zum Zitat Homchanthanakul, J., Manoonpong, P.: Continuous online adaptation of bioinspired adaptive neuroendocrine control for autonomous walking robots. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 1833–1845 (2022)CrossRef Homchanthanakul, J., Manoonpong, P.: Continuous online adaptation of bioinspired adaptive neuroendocrine control for autonomous walking robots. IEEE Trans. Neural Netw. Learn. Syst. 33(5), 1833–1845 (2022)CrossRef
5.
Zurück zum Zitat Martínez, A., Lawson, B., Durrough, C., et al.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Trans. Robot. 35(2), 307–316 (2019)CrossRef Martínez, A., Lawson, B., Durrough, C., et al.: A velocity-field-based controller for assisting leg movement during walking with a bilateral hip and knee lower limb exoskeleton. IEEE Trans. Robot. 35(2), 307–316 (2019)CrossRef
6.
Zurück zum Zitat Liu, J.S., He, Y., Yang, J.T., et al.: Design and analysis of a novel 12-DOF self-balancing lower extremity exoskeleton for walking assistance. Mech. Mach. Theory 167, 104519 (2022)CrossRef Liu, J.S., He, Y., Yang, J.T., et al.: Design and analysis of a novel 12-DOF self-balancing lower extremity exoskeleton for walking assistance. Mech. Mach. Theory 167, 104519 (2022)CrossRef
7.
Zurück zum Zitat Sariyildiz, E., Chen, G., Yu, H.: A unified robust motion controller design for series elastic actuators. Trans. Mechatron. 22(5), 2229–2240 (2017)CrossRef Sariyildiz, E., Chen, G., Yu, H.: A unified robust motion controller design for series elastic actuators. Trans. Mechatron. 22(5), 2229–2240 (2017)CrossRef
8.
Zurück zum Zitat Sariyildiz, E., Chen, G., Yu, H.: An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Trans. Ind. Electron. 63(3), 1900–1910 (2016) CrossRef Sariyildiz, E., Chen, G., Yu, H.: An acceleration-based robust motion controller design for a novel series elastic actuator. IEEE Trans. Ind. Electron. 63(3), 1900–1910 (2016) CrossRef
9.
Zurück zum Zitat Li, X., Pan, Y., Chen, G., et al.: Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Trans. Robot. 33(1), 169–182 (2017)CrossRef Li, X., Pan, Y., Chen, G., et al.: Adaptive human-robot interaction control for robots driven by series elastic actuators. IEEE Trans. Robot. 33(1), 169–182 (2017)CrossRef
10.
Zurück zum Zitat Guo, Z., Sun, J., Ling, J., et al.: Robust control of a serial variable stiffness actuator based on nonlinear disturbance observer (NDOB). In: International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 171–176 (2018) Guo, Z., Sun, J., Ling, J., et al.: Robust control of a serial variable stiffness actuator based on nonlinear disturbance observer (NDOB). In: International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 171–176 (2018)
11.
Zurück zum Zitat Han, S., Wang, H., Yu, H.: Nonlinear disturbance observer-based robust motion control for multi-joint series elastic actuator-driven robots. In: International Conference on Robotics and Automation (ICRA), pp. 10469–10475 (2021) Han, S., Wang, H., Yu, H.: Nonlinear disturbance observer-based robust motion control for multi-joint series elastic actuator-driven robots. In: International Conference on Robotics and Automation (ICRA), pp. 10469–10475 (2021)
12.
Zurück zum Zitat Mohammadi, A., Tavakoli, M., Marquez, H.J., et al.: Nonlinear disturbance observer design for robotic manipulators. Control. Eng. Pract. 21(3), 253–267 (2013)CrossRef Mohammadi, A., Tavakoli, M., Marquez, H.J., et al.: Nonlinear disturbance observer design for robotic manipulators. Control. Eng. Pract. 21(3), 253–267 (2013)CrossRef
14.
Zurück zum Zitat Sun, J., Guo, Z., Sun, D., et al.: Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech. Mach. Theory 130, 123–136 (2018)CrossRef Sun, J., Guo, Z., Sun, D., et al.: Design, modeling and control of a novel compact, energy-efficient, and rotational serial variable stiffness actuator (SVSA-II). Mech. Mach. Theory 130, 123–136 (2018)CrossRef
15.
Zurück zum Zitat Sun, J., Guo, Z., Zhang, Y., et al.: A novel design of serial variable stiffness actuator based on an archimedean spiral relocation mechanism. IEEE/ASME Trans. Mechatron. 23(5), 2121–2131 (2018)CrossRef Sun, J., Guo, Z., Zhang, Y., et al.: A novel design of serial variable stiffness actuator based on an archimedean spiral relocation mechanism. IEEE/ASME Trans. Mechatron. 23(5), 2121–2131 (2018)CrossRef
16.
Zurück zum Zitat Yu, H., Huang, S., Chen, G., et al.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23, 1072–1083 (2013)CrossRef Yu, H., Huang, S., Chen, G., et al.: Control design of a novel compliant actuator for rehabilitation robots. Mechatronics 23, 1072–1083 (2013)CrossRef
17.
Zurück zum Zitat Kong, K., Bae, J., Tomizuka, M.: Mechatronic considerations for actuation of human assistive wearable robotics: robust control of a series elastic actuator. In: Mohammed, S., Moreno, J.C., Kong, K., Amirat, Y. (eds.) Intelligent Assistive Robots. STAR, vol. 106, pp. 401–429. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12922-8_16 CrossRef Kong, K., Bae, J., Tomizuka, M.: Mechatronic considerations for actuation of human assistive wearable robotics: robust control of a series elastic actuator. In: Mohammed, S., Moreno, J.C., Kong, K., Amirat, Y. (eds.) Intelligent Assistive Robots. STAR, vol. 106, pp. 401–429. Springer, Cham (2015). https://​doi.​org/​10.​1007/​978-3-319-12922-8_​16 CrossRef
18.
Zurück zum Zitat Oh, S., Kong, K.: High-precision robust force control of a series elastic actuator. IEEE/ASME Trans. Mechatron. 22(1), 71–80 (2017)CrossRef Oh, S., Kong, K.: High-precision robust force control of a series elastic actuator. IEEE/ASME Trans. Mechatron. 22(1), 71–80 (2017)CrossRef
19.
Zurück zum Zitat Calanca, A., Fiorini, P.: A rationale for acceleration feedback in force control of series elastic actuators. IEEE Trans. Robot. 34(1), 48–61 (2018)CrossRef Calanca, A., Fiorini, P.: A rationale for acceleration feedback in force control of series elastic actuators. IEEE Trans. Robot. 34(1), 48–61 (2018)CrossRef
20.
Zurück zum Zitat Kim, D.H., Oh, J.H.: Hysteresis modeling for torque control of an elastomer series elastic actuator. IEEE/ASME Trans. Mechatron. 24(3), 1316–1324 (2019)CrossRef Kim, D.H., Oh, J.H.: Hysteresis modeling for torque control of an elastomer series elastic actuator. IEEE/ASME Trans. Mechatron. 24(3), 1316–1324 (2019)CrossRef
Metadaten
Titel
Disturbance Observer Compensation Based on Sliding-Mode Approach for Solving Compliant Actuator Tracking Control Problems
verfasst von
Changxian Xu
Jian Gu
Yongbai Liu
Liming Zhao
Zhongbo Sun
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-031-13835-5_12