Skip to main content

2019 | OriginalPaper | Buchkapitel

12. Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications

verfasst von : Farhana Tasnim Chowdhury, Mohammad Riazul Islam, Md. Rakibul Islam, Haseena Khan

Erschienen in: Endophytes and Secondary Metabolites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plant endophytes ranging from bacteria to fungi produce a diverse class of volatile organic compounds (VOCs) that are important for the development of symbiotic relation under highly competitive environment with the host. Not only that, they also play an important role in intra- and inter-kingdom signalling. Chemically, this gas-phase mixture may contain acids, alcohols, aldehydes, aromatics, esters, heterocycles, ketones, terpenes, thiols, and so forth. Several evidences suggested their potential use for sustainable crop production and industrial applications. Many VOCs have been reported with significant effects for antibiosis and growth promotion. They provide for an alternative to chemicals used to protect plants from pathogens and thus allow for better crop welfare. They also possess food and flavor properties which can be exploited in depth for food industries. Recent studies revealed that endophytes also produce diverse volatile hydrocarbons with fuel properties. They emit mixtures of volatile biofuel molecules comprising of alkanes, alkenes, acids, benzene derivatives, esters, etc. A vast diversity of endophytes are associated with plants for their ecology and fitness, and a systematic exploration of their VOCs will likely uncover novel use for their future utilization. In this chapter we highlight the nature and known or proposed functions of endophytic bacterial and fungal VOCs with a focus on the ones which have potential applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bitas V, Kim H-S, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26(8):835–843PubMedCrossRef Bitas V, Kim H-S, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant-Microbe Interact 26(8):835–843PubMedCrossRef
2.
Zurück zum Zitat Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant–microbe interactions. Curr Opin Plant Biol 13(4):378–387PubMedCrossRef Bednarek P, Kwon C, Schulze-Lefert P (2010) Not a peripheral issue: secretion in plant–microbe interactions. Curr Opin Plant Biol 13(4):378–387PubMedCrossRef
3.
Zurück zum Zitat Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRef Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383PubMedCrossRef
4.
Zurück zum Zitat Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRef Berendsen RL, Pieterse CM, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486PubMedCrossRef
5.
Zurück zum Zitat Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86PubMedPubMedCentralCrossRef Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Del Rio TG (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488(7409):86PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Liarzi O, Bar E, Lewinsohn E, Ezra D (2016a) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS One 11(12):e0168242PubMedPubMedCentralCrossRef Liarzi O, Bar E, Lewinsohn E, Ezra D (2016a) Use of the endophytic fungus Daldinia cf. concentrica and its volatiles as bio-control agents. PLoS One 11(12):e0168242PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW and White JF, Eds., Microbial Endophytes, Marcel Dekker, Inc., New York, NY, pp 3–29 Stone JK, Bacon CW, White JF Jr (2000) An overview of endophytic microbes: endophytism defined. In: Bacon CW and White JF, Eds., Microbial Endophytes, Marcel Dekker, Inc., New York, NY, pp 3–29
8.
Zurück zum Zitat Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8):fiw114CrossRefPubMed Card S, Johnson L, Teasdale S, Caradus J (2016) Deciphering endophyte behaviour: the link between endophyte biology and efficacious biological control agents. FEMS Microbiol Ecol 92(8):fiw114CrossRefPubMed
9.
Zurück zum Zitat Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRef Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320PubMedPubMedCentralCrossRef
10.
Zurück zum Zitat Hijaz F, El-Shesheny I, Killiny N (2013) Herbivory by the insect d iaphorina citri induces greater change in citrus plant volatile profile than does infection by the bacterium, Candidatus Liberibacter asiaticus. Plant Signal Behav 8(10):e25677PubMedCentralCrossRef Hijaz F, El-Shesheny I, Killiny N (2013) Herbivory by the insect d iaphorina citri induces greater change in citrus plant volatile profile than does infection by the bacterium, Candidatus Liberibacter asiaticus. Plant Signal Behav 8(10):e25677PubMedCentralCrossRef
11.
Zurück zum Zitat Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703PubMedCrossRef Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38(6):665–703PubMedCrossRef
12.
Zurück zum Zitat Herrmann A (2010) The chemistry and biology of volatiles. Andreas Herrmann (Ed.) John Wiley & Sons Herrmann A (2010) The chemistry and biology of volatiles. Andreas Herrmann (Ed.) John Wiley & Sons
13.
Zurück zum Zitat Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11(1):15–37CrossRef Kramer R, Abraham W-R (2012) Volatile sesquiterpenes from fungi: what are they good for? Phytochem Rev 11(1):15–37CrossRef
14.
Zurück zum Zitat Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2–3):73–83CrossRef Morath SU, Hung R, Bennett JW (2012) Fungal volatile organic compounds: a review with emphasis on their biotechnological potential. Fungal Biol Rev 26(2–3):73–83CrossRef
15.
Zurück zum Zitat Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842CrossRefPubMed Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24(4):814–842CrossRefPubMed
16.
Zurück zum Zitat Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36(10):1122–1131PubMedCrossRef Macías-Rubalcava ML, Hernández-Bautista BE, Oropeza F, Duarte G, González MC, Glenn AE, Hanlin RT, Anaya AL (2010) Allelochemical effects of volatile compounds and organic extracts from Muscodor yucatanensis, a tropical endophytic fungus from Bursera simaruba. J Chem Ecol 36(10):1122–1131PubMedCrossRef
17.
Zurück zum Zitat Sánchez-Ortiz B, Sánchez-Fernández R, Duarte G, Lappe-Oliveras P, Macías-Rubalcava M (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120(5):1313–1325PubMedCrossRef Sánchez-Ortiz B, Sánchez-Fernández R, Duarte G, Lappe-Oliveras P, Macías-Rubalcava M (2016) Antifungal, anti-oomycete and phytotoxic effects of volatile organic compounds from the endophytic fungus Xylaria sp. strain PB3f3 isolated from Haematoxylon brasiletto. J Appl Microbiol 120(5):1313–1325PubMedCrossRef
18.
Zurück zum Zitat Hung R, Lee S, Rodriguez-Saona C, Bennett JW (2014) Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 4(1):53PubMedPubMedCentralCrossRef Hung R, Lee S, Rodriguez-Saona C, Bennett JW (2014) Common gas phase molecules from fungi affect seed germination and plant health in Arabidopsis thaliana. AMB Express 4(1):53PubMedPubMedCentralCrossRef
19.
Zurück zum Zitat Mburu DM, Ndung’u MW, Maniania NK, Hassanali A (2011) Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni. J Exp Biol 214(6):956–962PubMedCrossRef Mburu DM, Ndung’u MW, Maniania NK, Hassanali A (2011) Comparison of volatile blends and gene sequences of two isolates of Metarhizium anisopliae of different virulence and repellency toward the termite Macrotermes michaelseni. J Exp Biol 214(6):956–962PubMedCrossRef
20.
Zurück zum Zitat Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29(5):531–533PubMedCrossRef Wood WF, Archer CL, Largent DL (2001) 1-Octen-3-ol, a banana slug antifeedant from mushrooms. Biochem Syst Ecol 29(5):531–533PubMedCrossRef
21.
Zurück zum Zitat Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148(11):3737–3741CrossRefPubMed Daisy BH, Strobel GA, Castillo U, Ezra D, Sears J, Weaver DK, Runyon JB (2002) Naphthalene, an insect repellent, is produced by Muscodor vitigenus, a novel endophytic fungus. Microbiology 148(11):3737–3741CrossRefPubMed
22.
Zurück zum Zitat Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39(7):840–859PubMedCrossRef Davis TS, Crippen TL, Hofstetter RW, Tomberlin JK (2013) Microbial volatile emissions as insect semiochemicals. J Chem Ecol 39(7):840–859PubMedCrossRef
23.
Zurück zum Zitat Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117(2):418–426PubMedCrossRef Inamdar AA, Masurekar P, Bennett JW (2010) Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster. Toxicol Sci 117(2):418–426PubMedCrossRef
24.
Zurück zum Zitat Chen H-W (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. China Biotechnol 28(1):124–133 Chen H-W (2008) Microbial volatile organic compounds: generation pathways and mass spectrometric detection. China Biotechnol 28(1):124–133
25.
Zurück zum Zitat Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193CrossRefPubMed Korpi A, Järnberg J, Pasanen A-L (2009) Microbial volatile organic compounds. Crit Rev Toxicol 39(2):139–193CrossRefPubMed
27.
Zurück zum Zitat Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204(2):111–121PubMedCrossRef Fiedler K, Schütz E, Geh S (2001) Detection of microbial volatile organic compounds (MVOCs) produced by moulds on various materials. Int J Hyg Environ Health 204(2):111–121PubMedCrossRef
28.
Zurück zum Zitat Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026PubMedPubMedCentralCrossRef Ryu C-M, Farag MA, Hu C-H, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80(5):758–771PubMedCrossRef Bailly A, Groenhagen U, Schulz S, Geisler M, Eberl L, Weisskopf L (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J 80(5):758–771PubMedCrossRef
30.
Zurück zum Zitat Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, Van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279PubMedCrossRef Ditengou FA, Müller A, Rosenkranz M, Felten J, Lasok H, Van Doorn MM, Legué V, Palme K, Schnitzler J-P, Polle A (2015) Volatile signalling by sesquiterpenes from ectomycorrhizal fungi reprogrammes root architecture. Nat Commun 6:6279PubMedCrossRef
31.
Zurück zum Zitat Li N, Alfiky A, Vaughan MM, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30(3):134–144CrossRef Li N, Alfiky A, Vaughan MM, Kang S (2016) Stop and smell the fungi: fungal volatile metabolites are overlooked signals involved in fungal interaction with plants. Fungal Biol Rev 30(3):134–144CrossRef
32.
Zurück zum Zitat Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40:2042–2067PubMedCrossRef Piechulla B, Lemfack MC, Kai M (2017) Effects of discrete bioactive microbial volatiles on plants and fungi. Plant Cell Environ 40:2042–2067PubMedCrossRef
33.
Zurück zum Zitat Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932PubMedCrossRefPubMedCentral Ryu C-M, Farag MA, Hu C-H, Reddy MS, Wei H-X, Paré PW, Kloepper JW (2003) Bacterial volatiles promote growth in Arabidopsis. Proc Natl Acad Sci 100(8):4927–4932PubMedCrossRefPubMedCentral
34.
Zurück zum Zitat Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839PubMedCrossRef Zhang H, Kim M-S, Krishnamachari V, Payton P, Sun Y, Grimson M, Farag MA, Ryu C-M, Allen R, Melo IS (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis. Planta 226(4):839PubMedCrossRef
35.
Zurück zum Zitat Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles–an effect of CO2? FEBS Lett 583(21):3473–3477PubMedCrossRef Kai M, Piechulla B (2009) Plant growth promotion due to rhizobacterial volatiles–an effect of CO2? FEBS Lett 583(21):3473–3477PubMedCrossRef
36.
Zurück zum Zitat Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedCrossRef Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4PubMedCrossRef
37.
Zurück zum Zitat Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577PubMedCrossRef Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58(4):568–577PubMedCrossRef
38.
Zurück zum Zitat Farag MA, Zhang H, Ryu C-M (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018PubMedPubMedCentralCrossRef Farag MA, Zhang H, Ryu C-M (2013) Dynamic chemical communication between plants and bacteria through airborne signals: induced resistance by bacterial volatiles. J Chem Ecol 39(7):1007–1018PubMedPubMedCentralCrossRef
39.
Zurück zum Zitat Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14(12):660–668PubMedPubMedCentralCrossRef Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14(12):660–668PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22(9):2004–2014PubMedPubMedCentralCrossRef Berthomieu P, Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22(9):2004–2014PubMedPubMedCentralCrossRef
41.
Zurück zum Zitat Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744PubMedCrossRef Zhang H, Kim M-S, Sun Y, Dowd SE, Shi H, Paré PW (2008a) Soil bacteria confer plant salt tolerance by tissue-specific regulation of the sodium transporter HKT1. Mol Plant-Microbe Interact 21(6):737–744PubMedCrossRef
42.
Zurück zum Zitat Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273PubMedCrossRef Zhang H, Xie X, Kim MS, Kornyeyev DA, Holaday S, Paré PW (2008b) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J 56(2):264–273PubMedCrossRef
43.
Zurück zum Zitat Zhang H, Murzello C, Sun Y, Kim M-S, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23(8):1097–1104PubMedCrossRef Zhang H, Murzello C, Sun Y, Kim M-S, Xie X, Jeter RM, Zak JC, Dowd SE, Paré PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant-Microbe Interact 23(8):1097–1104PubMedCrossRef
44.
Zurück zum Zitat Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075PubMedCrossRef Cho SM, Kang BR, Han SH, Anderson AJ, Park J-Y, Lee Y-H, Cho BH, Yang K-Y, Ryu C-M, Kim YC (2008) 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol Plant-Microbe Interact 21(8):1067–1075PubMedCrossRef
45.
Zurück zum Zitat Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26CrossRef Hung R, Lee S, Bennett JW (2013) Arabidopsis thaliana as a model system for testing the effect of Trichoderma volatile organic compounds. Fungal Ecol 6(1):19–26CrossRef
46.
Zurück zum Zitat Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727PubMedCrossRef Lee S, Hung R, Yap M, Bennett JW (2015) Age matters: the effects of volatile organic compounds emitted by Trichoderma atroviride on plant growth. Arch Microbiol 197(5):723–727PubMedCrossRef
47.
Zurück zum Zitat Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7PubMedPubMedCentralCrossRef Lee S, Yap M, Behringer G, Hung R, Bennett JW (2016) Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3(1):7PubMedPubMedCentralCrossRef
48.
Zurück zum Zitat Blom D, Fabbri C, Connor E, Schiestl F, Klauser D, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058PubMedCrossRef Blom D, Fabbri C, Connor E, Schiestl F, Klauser D, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058PubMedCrossRef
49.
Zurück zum Zitat Jeleń H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13(3):589–600CrossRef Jeleń H, Błaszczyk L, Chełkowski J, Rogowicz K, Strakowska J (2014) Formation of 6-n-pentyl-2H-pyran-2-one (6-PAP) and other volatiles by different Trichoderma species. Mycol Prog 13(3):589–600CrossRef
50.
Zurück zum Zitat Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147(11):2943–2950CrossRefPubMed Strobel GA, Dirkse E, Sears J, Markworth C (2001) Volatile antimicrobials from Muscodor albus, a novel endophytic fungus. Microbiology 147(11):2943–2950CrossRefPubMed
51.
Zurück zum Zitat Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320(2):87–94PubMedCrossRef Strobel G, Singh SK, Riyaz-Ul-Hassan S, Mitchell AM, Geary B, Sears J (2011) An endophytic/pathogenic Phoma sp. from creosote bush producing biologically active volatile compounds having fuel potential. FEMS Microbiol Lett 320(2):87–94PubMedCrossRef
52.
Zurück zum Zitat Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31(1):1–8CrossRef Mercier J, Jiménez JI (2004) Control of fungal decay of apples and peaches by the biofumigant fungus Muscodor albus. Postharvest Biol Technol 31(1):1–8CrossRef
53.
Zurück zum Zitat Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156PubMedPubMedCentralCrossRef Campos M, Jacobs-Wagner C, Strobel SA (2015) Mycofumigation by the volatile organic compound-producing fungus Muscodor albus induces bacterial cell death through DNA damage. Appl Environ Microbiol 81(3):1147–1156PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455PubMedCrossRef Lutz MP, Wenger S, Maurhofer M, Défago G, Duffy B (2004) Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48(3):447–455PubMedCrossRef
55.
Zurück zum Zitat Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 100(20):8651–8665PubMedCrossRef Werner S, Polle A, Brinkmann N (2016) Belowground communication: impacts of volatile organic compounds (VOCs) from soil fungi on other soil-inhabiting organisms. Appl Microbiol Biotechnol 100(20):8651–8665PubMedCrossRef
56.
Zurück zum Zitat Pauliuc I, Dorica B (2013) Antibacterial activity of Pleurotus ostreatus gemmotherapic extract. J Hortic For Biotech 17:242–245 Pauliuc I, Dorica B (2013) Antibacterial activity of Pleurotus ostreatus gemmotherapic extract. J Hortic For Biotech 17:242–245
59.
Zurück zum Zitat Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012PubMedCrossRef Kai M, Haustein M, Molina F, Petri A, Scholz B, Piechulla B (2009) Bacterial volatiles and their action potential. Appl Microbiol Biotechnol 81(6):1001–1012PubMedCrossRef
60.
Zurück zum Zitat Garbeva P, Hol WG, Termorshuizen AJ, Kowalchuk GA, De Boer W (2011) Fungistasis and general soil biostasis–a new synthesis. Soil Biol Biochem 43(3):469–477CrossRef Garbeva P, Hol WG, Termorshuizen AJ, Kowalchuk GA, De Boer W (2011) Fungistasis and general soil biostasis–a new synthesis. Soil Biol Biochem 43(3):469–477CrossRef
61.
Zurück zum Zitat Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28(1):57–64CrossRef Alabouvette C (1999) Fusarium wilt suppressive soils: an example of disease-suppressive soils. Australas Plant Pathol 28(1):57–64CrossRef
62.
Zurück zum Zitat de Boer W, Verheggen P, Gunnewiek PJK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69(2):835–844PubMedPubMedCentralCrossRef de Boer W, Verheggen P, Gunnewiek PJK, Kowalchuk GA, van Veen JA (2003) Microbial community composition affects soil fungistasis. Appl Environ Microbiol 69(2):835–844PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Lazazzara V, Perazzolli M, Pertot I, Biasioli F, Puopolo G, Cappellin L (2017) Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Microbiol Res 201:52–62PubMedCrossRef Lazazzara V, Perazzolli M, Pertot I, Biasioli F, Puopolo G, Cappellin L (2017) Growth media affect the volatilome and antimicrobial activity against Phytophthora infestans in four Lysobacter type strains. Microbiol Res 201:52–62PubMedCrossRef
64.
Zurück zum Zitat Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081PubMedPubMedCentralCrossRef Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Ossowicki A, Jafra S, Garbeva P (2017) The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 12(3):e0174362PubMedPubMedCentralCrossRef Ossowicki A, Jafra S, Garbeva P (2017) The antimicrobial volatile power of the rhizospheric isolate Pseudomonas donghuensis P482. PLoS One 12(3):e0174362PubMedPubMedCentralCrossRef
66.
Zurück zum Zitat De Vrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, Bailly A (2015) Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6:1295PubMedPubMedCentralCrossRef De Vrieze M, Pandey P, Bucheli TD, Varadarajan AR, Ahrens CH, Weisskopf L, Bailly A (2015) Volatile organic compounds from native potato-associated Pseudomonas as potential anti-oomycete agents. Front Microbiol 6:1295PubMedPubMedCentralCrossRef
67.
Zurück zum Zitat Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830PubMedPubMedCentralCrossRef Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830PubMedPubMedCentralCrossRef
68.
Zurück zum Zitat Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48(4):460–466PubMedCrossRef Zou C, Li Z, Yu D (2010) Bacillus megaterium strain XTBG34 promotes plant growth by producing 2-pentylfuran. J Microbiol 48(4):460–466PubMedCrossRef
69.
Zurück zum Zitat Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83CrossRef Gutiérrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51(1):75–83CrossRef
70.
Zurück zum Zitat Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85PubMedPubMedCentralCrossRef Bailly A, Weisskopf L (2012) The modulating effect of bacterial volatiles on plant growth: current knowledge and future challenges. Plant Signal Behav 7(1):79–85PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930PubMedCrossRef Han SH, Lee SJ, Moon JH, Park KH, Yang KY, Cho BH, Kim KY, Kim YW, Lee MC, Anderson AJ (2006) GacS-dependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol Plant-Microbe Interact 19(8):924–930PubMedCrossRef
72.
Zurück zum Zitat D'alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37(4):813–826PubMedCrossRef D'alessandro M, Erb M, Ton J, Brandenburg A, Karlen D, Zopfi J, Turlings TC (2014) Volatiles produced by soil-borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant Cell Environ 37(4):813–826PubMedCrossRef
73.
Zurück zum Zitat Boots A, Smolinska A, van Berkel J, Fijten R, Stobberingh E, Boumans M, Moonen E, Wouters E, Dallinga J, Van Schooten F (2014) Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography–mass spectrometry. J Breath Res 8(2):027106PubMedCrossRef Boots A, Smolinska A, van Berkel J, Fijten R, Stobberingh E, Boumans M, Moonen E, Wouters E, Dallinga J, Van Schooten F (2014) Identification of microorganisms based on headspace analysis of volatile organic compounds by gas chromatography–mass spectrometry. J Breath Res 8(2):027106PubMedCrossRef
74.
Zurück zum Zitat Kline D, Allan S, Bernier U, Welch C (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Med Vet Entomol 21(4):323–331PubMedCrossRef Kline D, Allan S, Bernier U, Welch C (2007) Evaluation of the enantiomers of 1-octen-3-ol and 1-octyn-3-ol as attractants for mosquitoes associated with a freshwater swamp in Florida, USA. Med Vet Entomol 21(4):323–331PubMedCrossRef
75.
Zurück zum Zitat Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4(9):e7032PubMedPubMedCentralCrossRef Bohbot JD, Dickens JC (2009) Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One 4(9):e7032PubMedPubMedCentralCrossRef
76.
Zurück zum Zitat Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282CrossRef Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energy 86(11):2273–2282CrossRef
77.
Zurück zum Zitat Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2(4):319–330CrossRef Qureshi N, Ezeji TC (2008) Butanol, ‘a superior biofuel’ production from agricultural residues (renewable biomass): recent progress in technology. Biofuels Bioprod Biorefin 2(4):319–330CrossRef
78.
Zurück zum Zitat Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energ Rev 27:77–93CrossRef Mood SH, Golfeshan AH, Tabatabaei M, Jouzani GS, Najafi GH, Gholami M, Ardjmand M (2013) Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renew Sustain Energ Rev 27:77–93CrossRef
79.
Zurück zum Zitat Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182CrossRef Wang L, Sharifzadeh M, Templer R, Murphy RJ (2013) Bioethanol production from various waste papers: economic feasibility and sensitivity analysis. Appl Energy 111:1172–1182CrossRef
80.
Zurück zum Zitat Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnergy Res 6(2):416–435CrossRef Schuster BG, Chinn MS (2013) Consolidated bioprocessing of lignocellulosic feedstocks for ethanol fuel production. BioEnergy Res 6(2):416–435CrossRef
81.
Zurück zum Zitat Strobel G (2014a) The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels 5(4):447–455CrossRef Strobel G (2014a) The use of endophytic fungi for the conversion of agricultural wastes to hydrocarbons. Biofuels 5(4):447–455CrossRef
82.
Zurück zum Zitat Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K (2017) Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101(6):2603–2618PubMedCrossRef Wu W, Davis RW, Tran-Gyamfi MB, Kuo A, LaButti K, Mihaltcheva S, Hundley H, Chovatia M, Lindquist E, Barry K (2017) Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl Microbiol Biotechnol 101(6):2603–2618PubMedCrossRef
83.
Zurück zum Zitat Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(12):3814–3829PubMedPubMedCentralCrossRef Griffin MA, Spakowicz DJ, Gianoulis TA, Strobel SA (2010) Volatile organic compound production by organisms in the genus Ascocoryne and a re-evaluation of myco-diesel production by NRRL 50072. Microbiology 156(12):3814–3829PubMedPubMedCentralCrossRef
84.
Zurück zum Zitat Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328PubMedCrossRef Strobel GA, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiology 154(11):3319–3328PubMedCrossRef
85.
Zurück zum Zitat Strobel G, Tomsheck A, Geary B, Spakowicz D, Strobel S, Mattner S, Mann R (2010) Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology 1(3):187–194CrossRef Strobel G, Tomsheck A, Geary B, Spakowicz D, Strobel S, Mattner S, Mann R (2010) Endophyte strain NRRL 50072 producing volatile organics is a species of Ascocoryne. Mycology 1(3):187–194CrossRef
86.
Zurück zum Zitat Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32(4):363–373PubMedCrossRef Zhi-Lin Y, Yi-Cun C, Bai-Ge X, Chu-Long Z (2012) Current perspectives on the volatile-producing fungal endophytes. Crit Rev Biotechnol 32(4):363–373PubMedCrossRef
87.
Zurück zum Zitat Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722PubMedCrossRef Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102(20):9718–9722PubMedCrossRef
88.
Zurück zum Zitat Banerjee D, Strobel GA, Booth B, Sears J, Spakowicz D, Busse S (2010) An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere 1(3):241–247 Banerjee D, Strobel GA, Booth B, Sears J, Spakowicz D, Busse S (2010) An endophytic Myrothecium inundatum producing volatile organic compounds. Mycosphere 1(3):241–247
89.
Zurück zum Zitat Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60(4):903–914PubMedCrossRef Tomsheck AR, Strobel GA, Booth E, Geary B, Spakowicz D, Knighton B, Floerchinger C, Sears J, Liarzi O, Ezra D (2010) Hypoxylon sp., an endophyte of Persea indica, producing 1, 8-cineole and other bioactive volatiles with fuel potential. Microb Ecol 60(4):903–914PubMedCrossRef
90.
Zurück zum Zitat Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61(4):729–739CrossRefPubMed Singh SK, Strobel GA, Knighton B, Geary B, Sears J, Ezra D (2011) An endophytic Phomopsis sp. possessing bioactivity and fuel potential with its volatile organic compounds. Microb Ecol 61(4):729–739CrossRefPubMed
91.
Zurück zum Zitat Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158(2):465–473CrossRefPubMed Ul-Hassan SR, Strobel GA, Booth E, Knighton B, Floerchinger C, Sears J (2012) Modulation of volatile organic compound formation in the mycodiesel-producing endophyte Hypoxylon sp. CI-4. Microbiology 158(2):465–473CrossRefPubMed
92.
Zurück zum Zitat Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae. PLoS One 11(2):e0146983PubMedPubMedCentralCrossRef Wu W, Tran W, Taatjes CA, Alonso-Gutierrez J, Lee TS, Gladden JM (2016) Rapid discovery and functional characterization of terpene synthases from four endophytic xylariaceae. PLoS One 11(2):e0146983PubMedPubMedCentralCrossRef
93.
Zurück zum Zitat Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99(12):4943–4951PubMedPubMedCentralCrossRef Spakowicz DJ, Strobel SA (2015) Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential. Appl Microbiol Biotechnol 99(12):4943–4951PubMedPubMedCentralCrossRef
94.
Zurück zum Zitat Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290CrossRef Subhash GV, Mohan SV (2011) Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol 102(19):9286–9290CrossRef
95.
Zurück zum Zitat Demirbaş A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources 24(9):835–841CrossRef Demirbaş A (2002) Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources 24(9):835–841CrossRef
96.
Zurück zum Zitat Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7(1):1CrossRef Janßen HJ, Steinbüchel A (2014) Fatty acid synthesis in Escherichia coli and its applications towards the production of fatty acid based biofuels. Biotechnol Biofuels 7(1):1CrossRef
97.
Zurück zum Zitat Knothe G, Krahl J and Gerpen J (2010) The biodiesel handbook. Knothe G, Krahl J, Gerpen J. Eds. Academic Press and AOCS Press. Elsevier Knothe G, Krahl J and Gerpen J (2010) The biodiesel handbook. Knothe G, Krahl J, Gerpen J. Eds. Academic Press and AOCS Press. Elsevier
98.
Zurück zum Zitat Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35(9):4661–4670CrossRef Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35(9):4661–4670CrossRef
99.
Zurück zum Zitat Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205PubMedCrossRef Ruan Z, Zanotti M, Wang X, Ducey C, Liu Y (2012) Evaluation of lipid accumulation from lignocellulosic sugars by Mortierella isabellina for biodiesel production. Bioresour Technol 110:198–205PubMedCrossRef
100.
Zurück zum Zitat Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156(1):270–277CrossRefPubMed Mitchell AM, Strobel GA, Moore E, Robison R, Sears J (2010) Volatile antimicrobials from Muscodor crispans, a novel endophytic fungus. Microbiology 156(1):270–277CrossRefPubMed
101.
Zurück zum Zitat Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237–246PubMedCrossRef Schoondermark-Stolk SA, Jansen M, Veurink JH, Verkleij AJ, Verrips CT, Euverink G-JW, Boonstra J, Dijkhuizen L (2006) Rapid identification of target genes for 3-methyl-1-butanol production in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 70(2):237–246PubMedCrossRef
102.
104.
Zurück zum Zitat Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedCrossRef Peralta-Yahya PP, Ouellet M, Chan R, Mukhopadhyay A, Keasling JD, Lee TS (2011) Identification and microbial production of a terpene-based advanced biofuel. Nat Commun 2:483PubMedCrossRef
105.
Zurück zum Zitat Renninger NS, McPhee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. Google Patents Renninger NS, McPhee DJ (2008) Fuel compositions comprising farnesane and farnesane derivatives and method of making and using same. Google Patents
106.
Zurück zum Zitat Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209 Grigoriev IV, Cullen D, Goodwin SB, Hibbett D, Jeffries TW, Kubicek CP, Kuske C, Magnuson JK, Martin F, Spatafora JW (2011) Fueling the future with fungal genomics. Mycology 2(3):192–209
107.
Zurück zum Zitat Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014CrossRef Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41(5):1001–1014CrossRef
108.
Zurück zum Zitat Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57(2):239–242CrossRef Peng X-W, Chen H-Z (2007) Microbial oil accumulation and cellulase secretion of the endophytic fungi from oleaginous plants. Ann Microbiol 57(2):239–242CrossRef
109.
Zurück zum Zitat Tao M-H, Yan J, Wei X-Y, Li D-L, Zhang W-M, Tan J-W (2011) A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Prod Commun 6(6):763–766PubMed Tao M-H, Yan J, Wei X-Y, Li D-L, Zhang W-M, Tan J-W (2011) A novel sesquiterpene alcohol from Fimetariella rabenhorstii, an endophytic fungus of Aquilaria sinensis. Nat Prod Commun 6(6):763–766PubMed
110.
Zurück zum Zitat Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi? Trends Plant Sci 14(7):353–355PubMedCrossRef Stadler M, Schulz B (2009) High energy biofuel from endophytic fungi? Trends Plant Sci 14(7):353–355PubMedCrossRef
111.
Zurück zum Zitat Abrahão MR, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52(1):367–372CrossRef Abrahão MR, Molina G, Pastore GM (2013) Endophytes: recent developments in biotechnology and the potential for flavor production. Food Res Int 52(1):367–372CrossRef
112.
Zurück zum Zitat Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44(30):3651–3659CrossRef Bäck J, Aaltonen H, Hellén H, Kajos MK, Patokoski J, Taipale R, Pumpanen J, Heinonsalo J (2010) Variable emissions of microbial volatile organic compounds (MVOCs) from root-associated fungi isolated from Scots pine. Atmos Environ 44(30):3651–3659CrossRef
113.
Zurück zum Zitat Nisperos-Carriedo MO, Shaw PE (1990) Comparison of volatile flavor components in fresh and processed orange juices. J Agric Food Chem 38(4):1048–1052CrossRef Nisperos-Carriedo MO, Shaw PE (1990) Comparison of volatile flavor components in fresh and processed orange juices. J Agric Food Chem 38(4):1048–1052CrossRef
114.
Zurück zum Zitat Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27(6):289–294 Molina G, Pimentel MR, Bertucci TC, Pastore GM (2012) Application of fungal endophytes in biotechnological processes. Chem Eng Trans 27(6):289–294
115.
Zurück zum Zitat Strobel G, Ericksen A, Sears J, Xie J, Geary B, Blatt B (2017) Urnula sp., an endophyte of Dicksonia antarctica, making a fragrant mixture of biologically active volatile organic compounds. Microb Ecol 1–10 Strobel G, Ericksen A, Sears J, Xie J, Geary B, Blatt B (2017) Urnula sp., an endophyte of Dicksonia antarctica, making a fragrant mixture of biologically active volatile organic compounds. Microb Ecol 1–10
116.
Zurück zum Zitat Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405PubMedCrossRef Hung R, Lee S, Bennett JW (2015) Fungal volatile organic compounds and their role in ecosystems. Appl Microbiol Biotechnol 99(8):3395–3405PubMedCrossRef
117.
Zurück zum Zitat Stinson A, Zidack N, Strobel G, Jacobsen B (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87(11):1349–1354PubMedCrossRef Stinson A, Zidack N, Strobel G, Jacobsen B (2003) Mycofumigation with Muscodor albus and Muscodor roseus for control of seedling diseases of sugar beet and Verticillium wilt of eggplant. Plant Dis 87(11):1349–1354PubMedCrossRef
118.
Zurück zum Zitat Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115(3):220–227PubMedCrossRef Corcuff R, Mercier J, Tweddell R, Arul J (2011) Effect of water activity on the production of volatile organic compounds by Muscodor albus and their effect on three pathogens in stored potato. Fungal Biol 115(3):220–227PubMedCrossRef
119.
Zurück zum Zitat Schalchli H, Tortella G, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152PubMedCrossRef Schalchli H, Tortella G, Rubilar O, Parra L, Hormazabal E, Quiroz A (2016) Fungal volatiles: an environmentally friendly tool to control pathogenic microorganisms in plants. Crit Rev Biotechnol 36(1):144–152PubMedCrossRef
120.
Zurück zum Zitat Palou L, Marcilla A, Rojas-Argudo C, Alonso M, Jacas J-A, del Río MÁ (2007) Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol Technol 46(3):252–261CrossRef Palou L, Marcilla A, Rojas-Argudo C, Alonso M, Jacas J-A, del Río MÁ (2007) Effects of X-ray irradiation and sodium carbonate treatments on postharvest Penicillium decay and quality attributes of clementine mandarins. Postharvest Biol Technol 46(3):252–261CrossRef
121.
Zurück zum Zitat Suwannarach N, Bussaban B, Nuangmek W, Pithakpol W, Jirawattanakul B, Matsui K, Lumyong S (2016) Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96(1):339–345PubMedCrossRef Suwannarach N, Bussaban B, Nuangmek W, Pithakpol W, Jirawattanakul B, Matsui K, Lumyong S (2016) Evaluation of Muscodor suthepensis strain CMU-Cib462 as a postharvest biofumigant for tangerine fruit rot caused by Penicillium digitatum. J Sci Food Agric 96(1):339–345PubMedCrossRef
122.
Zurück zum Zitat Lee S, Kim H, Choi G, Lee H, Jang K, Choi Y, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106(4):1213–1219PubMedCrossRef Lee S, Kim H, Choi G, Lee H, Jang K, Choi Y, Kim JC (2009) Mycofumigation with Oxyporus latemarginatus EF069 for control of postharvest apple decay and Rhizoctonia root rot on moth orchid. J Appl Microbiol 106(4):1213–1219PubMedCrossRef
123.
Zurück zum Zitat Wani MA, Sanjana K, Kumar DM, Lal DK (2010) GC–MS analysis reveals production of 2–phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol 50(1):110–114PubMedCrossRef Wani MA, Sanjana K, Kumar DM, Lal DK (2010) GC–MS analysis reveals production of 2–phenylethanol from Aspergillus niger endophytic in rose. J Basic Microbiol 50(1):110–114PubMedCrossRef
124.
Zurück zum Zitat Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15(11):7961–7970PubMedPubMedCentralCrossRef Zhao J, Mou Y, Shan T, Li Y, Zhou L, Wang M, Wang J (2010) Antimicrobial metabolites from the endophytic fungus Pichia guilliermondii isolated from Paris polyphylla var. yunnanensis. Molecules 15(11):7961–7970PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Liarzi O, Bucki P, Miyara SB, Ezra D (2016b) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11(12):e0168437PubMedPubMedCentralCrossRef Liarzi O, Bucki P, Miyara SB, Ezra D (2016b) Bioactive volatiles from an endophytic Daldinia cf. concentrica isolate affect the viability of the plant parasitic nematode Meloidogyne javanica. PLoS One 11(12):e0168437PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Riga E, Lacey LA, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control 45(3):380–385CrossRef Riga E, Lacey LA, Guerra N (2008) Muscodor albus, a potential biocontrol agent against plant-parasitic nematodes of economically important vegetable crops in Washington State, USA. Biol Control 45(3):380–385CrossRef
127.
Zurück zum Zitat Freire E, Campos V, Oliveira D, Faria M, Pohlit A, Noberto N, Rezende E, Pfenning L, Silva J (2012) Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. J Nematol 44(4):321PubMedPubMedCentral Freire E, Campos V, Oliveira D, Faria M, Pohlit A, Noberto N, Rezende E, Pfenning L, Silva J (2012) Volatile substances produced by Fusarium oxysporum from coffee rhizosphere and other microbes affect Meloidogyne incognita and Arthrobotrys conoides. J Nematol 44(4):321PubMedPubMedCentral
128.
Zurück zum Zitat Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46(3):199–213CrossRef Insam H, Seewald MS (2010) Volatile organic compounds (VOCs) in soils. Biol Fertil Soils 46(3):199–213CrossRef
129.
Zurück zum Zitat Cortes-Barco A, Goodwin P, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59(4):643–653CrossRef Cortes-Barco A, Goodwin P, Hsiang T (2010) Comparison of induced resistance activated by benzothiadiazole,(2R, 3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol 59(4):643–653CrossRef
130.
Zurück zum Zitat Song GC, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819PubMedPubMedCentralCrossRef Song GC, Ryu C-M (2013) Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int J Mol Sci 14(5):9803–9819PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9(3):240–244CrossRefPubMed Strobel G (2006) Harnessing endophytes for industrial microbiology. Curr Opin Microbiol 9(3):240–244CrossRefPubMed
132.
Zurück zum Zitat Grimme E, Zidack N, Sikora R, Strobel G, Jacobsen B (2007) Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis 91(2):220–225PubMedCrossRef Grimme E, Zidack N, Sikora R, Strobel G, Jacobsen B (2007) Comparison of Muscodor albus volatiles with a biorational mixture for control of seedling diseases of sugar beet and root-knot nematode on tomato. Plant Dis 91(2):220–225PubMedCrossRef
Metadaten
Titel
Diversity of Plant Endophytic Volatile Organic Compound (VOC) and Their Potential Applications
verfasst von
Farhana Tasnim Chowdhury
Mohammad Riazul Islam
Md. Rakibul Islam
Haseena Khan
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-90484-9_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.