Skip to main content

2024 | OriginalPaper | Buchkapitel

Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning

verfasst von : Hui Ouyang, Cheng Chen, Ke Tang

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Dynamic Bayesian Networks (DBNs), renowned for their interpretability, have become increasingly vital in representing complex stochastic processes in various domains such as gene expression analysis, healthcare, and traffic prediction. Structure learning of DBNs from data is a challenging endeavor, particularly for datasets with thousands of variables. Most current algorithms for DBN structure learning are adaptations from those used in static Bayesian Networks (BNs), and are typically focused on smaller-scale problems. In order to solve large-scale problems while taking full advantage of existing algorithms, this paper introduces a novel divide-and-conquer strategy, originally developed for static BNs, and adapts it for large-scale DBN structure learning. Additionally, we leverage the prior knowledge of 2 Time-sliced BNs (2-TBNs), a special class of DBNs, to enhance the performance of this strategy. Our approach significantly improves the scalability and accuracy of 2-TBN structure learning. Designed experiments demonstrate the effectiveness of our method, showing substantial improvements over existing algorithms in both computational efficiency and structure learning accuracy. In problem instances with more than 1,000 variables, our proposed approach on average improves two accuracy metrics by \(74.45\%\) and \(110.94\%\), respectively, while reducing runtime by an average of \(93.65\%\). Moreover, in problem instances with more than 10,000 variables, our proposed approach successfully completed the task in a matter of hours, whereas the baseline algorithm failed to produce a reasonable result within a one-day runtime limit.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ajmal, H.B., Madden, M.G.: Dynamic Bayesian network learning to infer sparse models from time series gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(5), 2794–2805 (2021)CrossRef Ajmal, H.B., Madden, M.G.: Dynamic Bayesian network learning to infer sparse models from time series gene expression data. IEEE/ACM Trans. Comput. Biol. Bioinf. 19(5), 2794–2805 (2021)CrossRef
2.
Zurück zum Zitat Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)MathSciNetCrossRef Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)MathSciNetCrossRef
3.
Zurück zum Zitat Bernaola, N., Michiels, M., Larranaga, P., Bielza, C.: Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks. bioRxiv, pp. 2020–02 (2020) Bernaola, N., Michiels, M., Larranaga, P., Bielza, C.: Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks. bioRxiv, pp. 2020–02 (2020)
4.
Zurück zum Zitat Bouckaert, R.R.: Bayesian Belief Networks: From Construction to Inference. Ph.D. thesis, Utrecht University (1995) Bouckaert, R.R.: Bayesian Belief Networks: From Construction to Inference. Ph.D. thesis, Utrecht University (1995)
5.
Zurück zum Zitat Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002)MathSciNet Chickering, D.M.: Learning equivalence classes of Bayesian-network structures. J. Mach. Learn. Res. 2, 445–498 (2002)MathSciNet
6.
Zurück zum Zitat Chickering, M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is np-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)MathSciNet Chickering, M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is np-hard. J. Mach. Learn. Res. 5, 1287–1330 (2004)MathSciNet
7.
Zurück zum Zitat Colombo, D., Maathuis, M.H., et al.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)MathSciNet Colombo, D., Maathuis, M.H., et al.: Order-independent constraint-based causal structure learning. J. Mach. Learn. Res. 15(1), 3741–3782 (2014)MathSciNet
8.
Zurück zum Zitat Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)CrossRef Cooper, G.F., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Mach. Learn. 9, 309–347 (1992)CrossRef
9.
Zurück zum Zitat Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 139–147 (1998) Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 139–147 (1998)
11.
Zurück zum Zitat Gu, J., Zhou, Q.: Learning big gaussian Bayesian networks: partition, estimation and fusion. J. Mach. Learn. Res. 21(1), 6340–6370 (2020)MathSciNet Gu, J., Zhou, Q.: Learning big gaussian Bayesian networks: partition, estimation and fusion. J. Mach. Learn. Res. 21(1), 6340–6370 (2020)MathSciNet
12.
Zurück zum Zitat Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y., Chobtham, K.: A survey of Bayesian network structure learning. Artif. Intell. Rev. 56(6), 1–94 (2023) Kitson, N.K., Constantinou, A.C., Guo, Z., Liu, Y., Chobtham, K.: A survey of Bayesian network structure learning. Artif. Intell. Rev. 56(6), 1–94 (2023)
13.
Zurück zum Zitat Larranaga, P., Kuijpers, C.M., Murga, R.H., Yurramendi, Y.: Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst. Man Cybern. 26(4), 487–493 (1996)CrossRef Larranaga, P., Kuijpers, C.M., Murga, R.H., Yurramendi, Y.: Learning Bayesian network structures by searching for the best ordering with genetic algorithms. IEEE Trans. Syst. Man Cybern. 26(4), 487–493 (1996)CrossRef
14.
Zurück zum Zitat Lin, J., Li, Z., Li, Z., Bai, L., Zhao, R., Zhang, C.: Dynamic causal graph convolutional network for traffic prediction (2023). arXiv preprint arXiv:2306.07019 Lin, J., Li, Z., Li, Z., Bai, L., Zhao, R., Zhang, C.: Dynamic causal graph convolutional network for traffic prediction (2023). arXiv preprint arXiv:​2306.​07019
15.
Zurück zum Zitat Lou, Y., Dong, Y., Ao, H.: Structure learning algorithm of DBN based on particle swarm optimization. In: 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pp. 102–105. IEEE (2015) Lou, Y., Dong, Y., Ao, H.: Structure learning algorithm of DBN based on particle swarm optimization. In: 2015 14th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), pp. 102–105. IEEE (2015)
16.
Zurück zum Zitat Murphy, K.P.: Dynamic Bayesian Networks: Representation. Inference and Learning. University of California, Berkeley (2002) Murphy, K.P.: Dynamic Bayesian Networks: Representation. Inference and Learning. University of California, Berkeley (2002)
17.
Zurück zum Zitat OpenAI: GPT-4 technical report (2023) OpenAI: GPT-4 technical report (2023)
18.
Zurück zum Zitat Pearl, J.: Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society, 1985, pp. 329–334 (1985) Pearl, J.: Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society, 1985, pp. 329–334 (1985)
19.
Zurück zum Zitat Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images. Int. J. Data Sci. Analytics 3, 121–129 (2017)CrossRef Ramsey, J., Glymour, M., Sanchez-Romero, R., Glymour, C.: A million variables and more: the fast greedy equivalence search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images. Int. J. Data Sci. Analytics 3, 121–129 (2017)CrossRef
20.
Zurück zum Zitat Ramsey, J.D., et al.: Tetrad - a toolbox for causal discovery. In: 8th International Workshop on Climate Informatics, p. 29 (2018) Ramsey, J.D., et al.: Tetrad - a toolbox for causal discovery. In: 8th International Workshop on Climate Informatics, p. 29 (2018)
21.
22.
Zurück zum Zitat Romero, D., Jané, R.: Dynamic Bayesian model for detecting obstructive respiratory events by using an experimental model. Sensors 23(7), 3371 (2023)CrossRef Romero, D., Jané, R.: Dynamic Bayesian model for detecting obstructive respiratory events by using an experimental model. Sensors 23(7), 3371 (2023)CrossRef
23.
Zurück zum Zitat Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978) Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)
24.
Zurück zum Zitat Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35, 1–22 (2010)CrossRef Scutari, M.: Learning Bayesian networks with the bnlearn R package. J. Stat. Softw. 35, 1–22 (2010)CrossRef
25.
Zurück zum Zitat Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press (2000) Spirtes, P., Glymour, C.N., Scheines, R.: Causation, Prediction, and Search. MIT Press (2000)
26.
Zurück zum Zitat Trabelsi, G., Leray, P., Ayed, M.B., Alimi, A.M.: Benchmarking dynamic Bayesian network structure learning algorithms. In: 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–6. IEEE (2013) Trabelsi, G., Leray, P., Ayed, M.B., Alimi, A.M.: Benchmarking dynamic Bayesian network structure learning algorithms. In: 2013 5th International Conference on Modeling, Simulation and Applied Optimization (ICMSAO), pp. 1–6. IEEE (2013)
27.
28.
Zurück zum Zitat Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and sample efficient discovery of Markov blankets and direct causal relations. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 673–678 (2003) Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and sample efficient discovery of Markov blankets and direct causal relations. In: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 673–678 (2003)
29.
Zurück zum Zitat Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006)CrossRef Tsamardinos, I., Brown, L.E., Aliferis, C.F.: The max-min hill-climbing Bayesian network structure learning algorithm. Mach. Learn. 65, 31–78 (2006)CrossRef
30.
Zurück zum Zitat Wang, H., Yu, K., Yao, H.: Learning dynamic Bayesian networks using evolutionary MCMC. In: 2006 International Conference on Computational Intelligence and Security, vol. 1, pp. 45–50. IEEE (2006) Wang, H., Yu, K., Yao, H.: Learning dynamic Bayesian networks using evolutionary MCMC. In: 2006 International Conference on Computational Intelligence and Security, vol. 1, pp. 45–50. IEEE (2006)
31.
Zurück zum Zitat Zhang, Y., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 726–742 (2021)CrossRef Zhang, Y., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 726–742 (2021)CrossRef
32.
Zurück zum Zitat Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with no TEARS: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018) Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with no TEARS: continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
33.
Zurück zum Zitat Zhu, R., et al.: Efficient and scalable structure learning for Bayesian networks: algorithms and applications. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2613–2624. IEEE (2021) Zhu, R., et al.: Efficient and scalable structure learning for Bayesian networks: algorithms and applications. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 2613–2624. IEEE (2021)
Metadaten
Titel
Divide-and-Conquer Strategy for Large-Scale Dynamic Bayesian Network Structure Learning
verfasst von
Hui Ouyang
Cheng Chen
Ke Tang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_5