Skip to main content

13.07.2024 | Original Paper

DNA codes over \(GR(2^{3},d)[X]/\langle X^{2},2X \rangle\)

verfasst von: C. Álvarez-García, C. A. Castillo-Guillén, Mohamed Badaoui

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The main results of this paper are in two directions. First, the family of finite local rings of length 4 whose annihilator of their maximal ideals have length 2 is determined. Second, the structure of constacyclic, reversible and DNA codes over those rings are described, the length of the code is relatively prime to the characteristic of the residue field of the ring.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Álvarez-García, C., Castillo-Guillén, C.A.: DNA codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 30(1), 89–108 (2022)MathSciNet Álvarez-García, C., Castillo-Guillén, C.A.: DNA codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 30(1), 89–108 (2022)MathSciNet
3.
Zurück zum Zitat Álvarez-García, C., Castillo-Guillén, C.A.: Self dual reversible and complementary duals constacyclic codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 29(2), 25–50 (2021)MathSciNet Álvarez-García, C., Castillo-Guillén, C.A.: Self dual reversible and complementary duals constacyclic codes over finite local Frobenius non-chain rings of length \(5\) and nilpotency index \(4\). An. Stiint. Univ. Ovidius Constanta Ser. Mat. 29(2), 25–50 (2021)MathSciNet
4.
Zurück zum Zitat Abualrub, T., Ghrayeb, A., Zeng, X.N.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343, 448–457 (2006)MathSciNetCrossRef Abualrub, T., Ghrayeb, A., Zeng, X.N.: Construction of cyclic codes over \(GF(4)\) for DNA computing. J. Frankl. Inst. 343, 448–457 (2006)MathSciNetCrossRef
5.
Zurück zum Zitat Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)CrossRef
6.
Zurück zum Zitat Bayram, A., Oztas, E.S., Siap, I.: Codes over \(\mathbb{F} _{4}+v\mathbb{F} _{4}\) and some DNA applications. Des. Codes Cryptogr. 80, 379–393 (2016)MathSciNetCrossRef Bayram, A., Oztas, E.S., Siap, I.: Codes over \(\mathbb{F} _{4}+v\mathbb{F} _{4}\) and some DNA applications. Des. Codes Cryptogr. 80, 379–393 (2016)MathSciNetCrossRef
7.
Zurück zum Zitat Castillo-Guillén, C.A., Rentería-Márquez, C., Tapia-Recillas, H.: Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index \(3\). Finite Fields Their Appl. 43, 1–21 (2017)MathSciNetCrossRef Castillo-Guillén, C.A., Rentería-Márquez, C., Tapia-Recillas, H.: Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index \(3\). Finite Fields Their Appl. 43, 1–21 (2017)MathSciNetCrossRef
8.
Zurück zum Zitat Castillo-Guillén, C.A., Rentería-Márquez, C., Sarmiento, E., Villareal, R., Tapia-Recillas, H.: The dual of a constacyclic code, constacyclic self dual, constacyclic reversible and constacyclic codes with complementary duals over finite local Frobenius non-chain rings of nilpotency index \(3\). Discret. Math. 342, 2283–2296 (2019)CrossRef Castillo-Guillén, C.A., Rentería-Márquez, C., Sarmiento, E., Villareal, R., Tapia-Recillas, H.: The dual of a constacyclic code, constacyclic self dual, constacyclic reversible and constacyclic codes with complementary duals over finite local Frobenius non-chain rings of nilpotency index \(3\). Discret. Math. 342, 2283–2296 (2019)CrossRef
9.
Zurück zum Zitat Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004)MathSciNetCrossRef Dinh, H.Q., López-Permouth, S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50, 1728–1744 (2004)MathSciNetCrossRef
10.
Zurück zum Zitat Dinh, H.Q., Singh, A.K., Pattanayak, S., Sriboonchitta, S.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}+u\mathbb{F} _{2}+v\mathbb{F} _{2}+uv\mathbb{F} _{2}+v^{2}\mathbb{F} _{2}+uv^{2}\mathbb{F} _{2}\). Des. Codes Cryptogr. 86, 1451–1467 (2018)MathSciNetCrossRef Dinh, H.Q., Singh, A.K., Pattanayak, S., Sriboonchitta, S.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}+u\mathbb{F} _{2}+v\mathbb{F} _{2}+uv\mathbb{F} _{2}+v^{2}\mathbb{F} _{2}+uv^{2}\mathbb{F} _{2}\). Des. Codes Cryptogr. 86, 1451–1467 (2018)MathSciNetCrossRef
11.
12.
Zurück zum Zitat Guenda, K., Gulliver, T.A.: Construction of cyclic codes over \(\mathbb{F} _{2}+u\mathbb{F} _{2}\) for DNA computing. Appl. Algebra Engrg. Comm. Comput. 24, 445–459 (2013)MathSciNetCrossRef Guenda, K., Gulliver, T.A.: Construction of cyclic codes over \(\mathbb{F} _{2}+u\mathbb{F} _{2}\) for DNA computing. Appl. Algebra Engrg. Comm. Comput. 24, 445–459 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49, 737–759 (1987)MathSciNetCrossRef Head, T.: Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. Bull. Math. Biol. 49, 737–759 (1987)MathSciNetCrossRef
14.
Zurück zum Zitat Kaur, J., Sehmi, R., Dutt, S.: Reversible complement cyclic codes over Galois rings with application to DNA codes. Discret. Appl. Math. 280, 162–170 (2020)MathSciNetCrossRef Kaur, J., Sehmi, R., Dutt, S.: Reversible complement cyclic codes over Galois rings with application to DNA codes. Discret. Appl. Math. 280, 162–170 (2020)MathSciNetCrossRef
15.
Zurück zum Zitat MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998) MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1998)
16.
Zurück zum Zitat Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986) Matsumura, H.: Commutative Ring Theory. Cambridge University Press, Cambridge (1986)
17.
Zurück zum Zitat McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974) McDonald, B.R.: Finite Rings with Identity. Marcel Dekker, New York (1974)
18.
Zurück zum Zitat Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}[u]/\langle u^{2}-1\rangle\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)CrossRef Siap, I., Abualrub, T., Ghrayeb, A.: Cyclic DNA codes over the ring \(\mathbb{F} _{2}[u]/\langle u^{2}-1\rangle\) based on the deletion distance. J. Frankl. Inst. 346, 731–740 (2009)CrossRef
19.
Zurück zum Zitat Yildiz, B., Siap, I.: Cyclic codes over \(\mathbb{F} _{2}[u]/\langle u^{4}-1\rangle\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012)MathSciNetCrossRef Yildiz, B., Siap, I.: Cyclic codes over \(\mathbb{F} _{2}[u]/\langle u^{4}-1\rangle\) and applications to DNA codes. Comput. Math. Appl. 63, 1169–1176 (2012)MathSciNetCrossRef
Metadaten
Titel
DNA codes over
verfasst von
C. Álvarez-García
C. A. Castillo-Guillén
Mohamed Badaoui
Publikationsdatum
13.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00667-1