Skip to main content

2014 | OriginalPaper | Buchkapitel

DNAzyme-Functionalized Gold Nanoparticles for Biosensing

verfasst von : Yu Xiang, Peiwen Wu, Li Huey Tan, Yi Lu

Erschienen in: Biosensors Based on Aptamers and Enzymes

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent progress in using DNAzyme-functionalized gold nanoparticles (AuNPs) for biosensing is summarized in this chapter. A variety of methods, including those for attaching DNA on AuNPs, detecting metal ions and small molecules by DNAzyme-functionalized AuNPs, and intracellular applications of DNAzyme-functionalized AuNPs are discussed. DNAzyme-functionalized AuNPs will increasingly play more important roles in biosensing and many other multidisciplinary applications.

Graphical Abstract

This chapter covers the recent advancement in biosensing applications of DNAzyme-functionalized gold nanoparticles, including the detection of metal ions, small molecules, and intracellular imaging.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738 Watson JD, Crick FHC (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171:737–738
2.
Zurück zum Zitat Saenger W (1984) Principles of nucleic acid structure. Springer, New York Saenger W (1984) Principles of nucleic acid structure. Springer, New York
3.
Zurück zum Zitat Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229 Breaker RR, Joyce GF (1994) A DNA enzyme that cleaves RNA. Chem Biol 1:223–229
4.
Zurück zum Zitat Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375:611–614 Cuenoud B, Szostak JW (1995) A DNA metalloenzyme with DNA ligase activity. Nature 375:611–614
5.
Zurück zum Zitat Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344:467–468 Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded-DNA. Nature 344:467–468
6.
Zurück zum Zitat Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355:564–566 Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded-DNA molecules that bind and inhibit human thrombin. Nature 355:564–566
7.
Zurück zum Zitat Ellington AD, Szostak JW (1992) Selection invitro of single-stranded-DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852 Ellington AD, Szostak JW (1992) Selection invitro of single-stranded-DNA molecules that fold into specific ligand-binding structures. Nature 355:850–852
8.
Zurück zum Zitat Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510 Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510
9.
Zurück zum Zitat Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822 Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822
10.
Zurück zum Zitat Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2 + -dependent RNA phosphoesterase activity. Chem Biol 2:655–660 Breaker RR, Joyce GF (1995) A DNA enzyme with Mg2 + -dependent RNA phosphoesterase activity. Chem Biol 2:655–660
11.
Zurück zum Zitat Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3:1039–1046 Carmi N, Shultz LA, Breaker RR (1996) In vitro selection of self-cleaving DNAs. Chem Biol 3:1039–1046
12.
Zurück zum Zitat Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266 Santoro SW, Joyce GF (1997) A general purpose RNA-cleaving DNA enzyme. Proc Natl Acad Sci USA 94:4262–4266
13.
Zurück zum Zitat Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci USA 95:2233–2237 Carmi N, Balkhi SR, Breaker RR (1998) Cleaving DNA with DNA. Proc Natl Acad Sci USA 95:2233–2237
14.
Zurück zum Zitat Feldman AR, Sen D (2001) A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J Mol Biol 313:283–294 Feldman AR, Sen D (2001) A new and efficient DNA enzyme for the sequence-specific cleavage of RNA. J Mol Biol 313:283–294
15.
Zurück zum Zitat Liu J, Lu Y (2007) Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46:7587–7590 Liu J, Lu Y (2007) Rational design of “Turn-On” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed 46:7587–7590
16.
Zurück zum Zitat Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci USA 104:2056–2061 Liu JW, Brown AK, Meng XL, Cropek DM, Istok JD, Watson DB, Lu Y (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci USA 104:2056–2061
17.
Zurück zum Zitat Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric ions. Angew Chem Int Ed 47:4346–4350 Hollenstein M, Hipolito C, Lam C, Dietrich D, Perrin DM (2008) A highly selective DNAzyme sensor for mercuric ions. Angew Chem Int Ed 47:4346–4350
18.
Zurück zum Zitat Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720 Chandra M, Sachdeva A, Silverman SK (2009) DNA-catalyzed sequence-specific hydrolysis of DNA. Nat Chem Biol 5:718–720
19.
Zurück zum Zitat Sreedhara A, Li YF, Breaker RR (2004) Ligating DNA with DNA. J Am Chem Soc 126:3454–3460 Sreedhara A, Li YF, Breaker RR (2004) Ligating DNA with DNA. J Am Chem Soc 126:3454–3460
20.
Zurück zum Zitat Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) General deoxyribozyme-catalyzed synthesis of native 3′-5′ RNA linkages. J Am Chem Soc 127:13124–13125 Purtha WE, Coppins RL, Smalley MK, Silverman SK (2005) General deoxyribozyme-catalyzed synthesis of native 3′-5′ RNA linkages. J Am Chem Soc 127:13124–13125
21.
Zurück zum Zitat Li YF, Breaker RR (1999) Phosphorylating DNA with DNA. Proc Natl Acad Sci USA 96:2746–2751 Li YF, Breaker RR (1999) Phosphorylating DNA with DNA. Proc Natl Acad Sci USA 96:2746–2751
22.
Zurück zum Zitat Li YF, Liu Y, Breaker RR (2000) Capping DNA with DNA. Biochemistry 39:3106–3114 Li YF, Liu Y, Breaker RR (2000) Capping DNA with DNA. Biochemistry 39:3106–3114
23.
Zurück zum Zitat Sheppard TL, Ordoukhanian P, Joyce GF (2000) A DNA enzyme with N-glycosylase activity. Proc Natl Acad Sci USA 97:7802–7807 Sheppard TL, Ordoukhanian P, Joyce GF (2000) A DNA enzyme with N-glycosylase activity. Proc Natl Acad Sci USA 97:7802–7807
24.
Zurück zum Zitat Chinnapen DJF, Sen D (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc Natl Acad Sci USA 101:65–69 Chinnapen DJF, Sen D (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc Natl Acad Sci USA 101:65–69
25.
Zurück zum Zitat Thorne RE, Chinnapen DJF, Sekhon GS, Sen D (2009) A deoxyribozyme, Sero1C, uses light and serotonin to repair diverse pyrimidine dimers in DNA. J Mol Biol 388:21–29 Thorne RE, Chinnapen DJF, Sekhon GS, Sen D (2009) A deoxyribozyme, Sero1C, uses light and serotonin to repair diverse pyrimidine dimers in DNA. J Mol Biol 388:21–29
26.
Zurück zum Zitat Pradeepkumar PI, Hobartner C, Baum DA, Silverman SK (2008) DNA-catalyzed formation of nucleopeptide linkages. Angew Chem Int Ed 47:1753–1757 Pradeepkumar PI, Hobartner C, Baum DA, Silverman SK (2008) DNA-catalyzed formation of nucleopeptide linkages. Angew Chem Int Ed 47:1753–1757
27.
Zurück zum Zitat Sachdeva A, Silverman SK (2010) DNA-catalyzed serine side chain reactivity and selectivity. Chem Commun 46:2215–2217 Sachdeva A, Silverman SK (2010) DNA-catalyzed serine side chain reactivity and selectivity. Chem Commun 46:2215–2217
28.
Zurück zum Zitat Li YF, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3:743–747 Li YF, Sen D (1996) A catalytic DNA for porphyrin metallation. Nat Struct Biol 3:743–747
29.
Zurück zum Zitat Travascio P, Li YF, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517 Travascio P, Li YF, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517
30.
Zurück zum Zitat Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133:1877–1884 Poon LCH, Methot SP, Morabi-Pazooki W, Pio F, Bennet AJ, Sen D (2011) Guanine-rich RNAs and DNAs that bind heme robustly catalyze oxygen transfer reactions. J Am Chem Soc 133:1877–1884
31.
Zurück zum Zitat Chandra M, Silverman SK (2008) DNA and RNA can be equally efficient catalysts for carbon–carbon bond formation. J Am Chem Soc 130:2936–2937 Chandra M, Silverman SK (2008) DNA and RNA can be equally efficient catalysts for carbon–carbon bond formation. J Am Chem Soc 130:2936–2937
32.
Zurück zum Zitat Kurreck J (2003) Antisense technologies—improvement through novel chemical modifications. Eur J Biochem 270:1628–1644 Kurreck J (2003) Antisense technologies—improvement through novel chemical modifications. Eur J Biochem 270:1628–1644
33.
Zurück zum Zitat Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31:5982–5992 Schubert S, Gul DC, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J (2003) RNA cleaving ‘10-23’ DNAzymes with enhanced stability and activity. Nucleic Acids Res 31:5982–5992
34.
Zurück zum Zitat Kuwabara T, Warashina M, Taira K (2000) Allosterically controllable ribozymes with biosensor functions. Curr Opin Chem Biol 4:669–677 Kuwabara T, Warashina M, Taira K (2000) Allosterically controllable ribozymes with biosensor functions. Curr Opin Chem Biol 4:669–677
35.
Zurück zum Zitat Navani NK, Li YF (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281 Navani NK, Li YF (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281
36.
Zurück zum Zitat Vannela R, Adriaens P (2006) DNAzymes in environmental sensing. Crit Rev Environ Sci Technol 36:375–403 Vannela R, Adriaens P (2006) DNAzymes in environmental sensing. Crit Rev Environ Sci Technol 36:375–403
37.
Zurück zum Zitat Mok W, Li YF (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8:7050–7084 Mok W, Li YF (2008) Recent progress in nucleic acid aptamer-based biosensors and bioassays. Sensors 8:7050–7084
38.
Zurück zum Zitat Palchetti I, Mascini M (2008) Nucleic acid biosensors for environmental pollution monitoring. Analyst 133:846–854 Palchetti I, Mascini M (2008) Nucleic acid biosensors for environmental pollution monitoring. Analyst 133:846–854
39.
Zurück zum Zitat Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165 Willner I, Shlyahovsky B, Zayats M, Willner B (2008) DNAzymes for sensing, nanobiotechnology and logic gate applications. Chem Soc Rev 37:1153–1165
40.
Zurück zum Zitat Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17 Kosman J, Juskowiak B (2011) Peroxidase-mimicking DNAzymes for biosensing applications: a review. Anal Chim Acta 707:7–17
41.
Zurück zum Zitat Ma DL, Chan DSH, Man BYW, Leung CH (2011) Oligonucleotide-based luminescent detection of metal Ions. Chem Asian J. 6:986–1003 Ma DL, Chan DSH, Man BYW, Leung CH (2011) Oligonucleotide-based luminescent detection of metal Ions. Chem Asian J. 6:986–1003
42.
Zurück zum Zitat Lu Y, Liu JW, Li J, Bruesehoff PJ, Pavot CMB, Brown AK (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18:529–540 Lu Y, Liu JW, Li J, Bruesehoff PJ, Pavot CMB, Brown AK (2003) New highly sensitive and selective catalytic DNA biosensors for metal ions. Biosens Bioelectron 18:529–540
43.
Zurück zum Zitat Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998 Liu JW, Cao ZH, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998
44.
Zurück zum Zitat Nagraj N, Lu Y (2011) Catalytic nucleic acid biosensors for environmental monitoring. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, Cambridge Nagraj N, Lu Y (2011) Catalytic nucleic acid biosensors for environmental monitoring. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, Cambridge
45.
Zurück zum Zitat Zhang XB, Kong RM, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128 Zhang XB, Kong RM, Lu Y (2011) Metal ion sensors based on DNAzymes and related DNA molecules. Annu Rev Anal Chem 4:105–128
46.
Zurück zum Zitat Stojanovic MN (2008) Molecular computing with deoxyribozymes. Prog Nucleic Acid Res Mol Biol 82:199–217 Stojanovic MN (2008) Molecular computing with deoxyribozymes. Prog Nucleic Acid Res Mol Biol 82:199–217
47.
Zurück zum Zitat Chen X, Ellington AD (2010) Shaping up nucleic acid computation. Curr Opin Biotechnol 21:392–400 Chen X, Ellington AD (2010) Shaping up nucleic acid computation. Curr Opin Biotechnol 21:392–400
48.
Zurück zum Zitat Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21:376–391 Teller C, Willner I (2010) Functional nucleic acid nanostructures and DNA machines. Curr Opin Biotechnol 21:376–391
49.
Zurück zum Zitat Pyle AM, Chu VT, Jankowsky E, Boudvillain H (2000) Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol 317:140–146 Pyle AM, Chu VT, Jankowsky E, Boudvillain H (2000) Using DNAzymes to cut, process, and map RNA molecules for structural studies or modification. Methods Enzymol 317:140–146
50.
Zurück zum Zitat Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465 Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21:1457–1465
51.
Zurück zum Zitat Sioud M, Iversen PO (2005) Ribozymes, DNAzymes and small interfering RNAs as therapeutics. Curr Drug Targets 6:647–653 Sioud M, Iversen PO (2005) Ribozymes, DNAzymes and small interfering RNAs as therapeutics. Curr Drug Targets 6:647–653
52.
Zurück zum Zitat Bhindi R, Fahmy RG, Lowe HC, Chesterman CN, Dass CR, Cairns MJ, Saravolac EG, Sun LQ, Khachigian LM (2007) Brothers in arms—DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol 171:1079–1088 Bhindi R, Fahmy RG, Lowe HC, Chesterman CN, Dass CR, Cairns MJ, Saravolac EG, Sun LQ, Khachigian LM (2007) Brothers in arms—DNA enzymes, short interfering RNA, and the emerging wave of small-molecule nucleic acid-based gene-silencing strategies. Am J Pathol 171:1079–1088
53.
Zurück zum Zitat Isaka Y (2007) DNAzymes as potential therapeutic molecules. Curr Opin Mol Ther 9:132–136 Isaka Y (2007) DNAzymes as potential therapeutic molecules. Curr Opin Mol Ther 9:132–136
54.
Zurück zum Zitat Tan ML, Choong PFM, Dass CR (2009) DNAzyme delivery systems: Getting past first base. Expert Opin Drug Deliv 6:127–138 Tan ML, Choong PFM, Dass CR (2009) DNAzyme delivery systems: Getting past first base. Expert Opin Drug Deliv 6:127–138
55.
Zurück zum Zitat Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL (2000) Catalytic nucleic acids: From lab to applications. Pharmacol Rev 52:325–347 Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL (2000) Catalytic nucleic acids: From lab to applications. Pharmacol Rev 52:325–347
56.
Zurück zum Zitat Emilsson GM, Breaker RR (2002) Deoxyribozymes: new activities and new applications. Cell Mol Life Sci 59:596–607 Emilsson GM, Breaker RR (2002) Deoxyribozymes: new activities and new applications. Cell Mol Life Sci 59:596–607
57.
Zurück zum Zitat Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845 Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845
58.
Zurück zum Zitat Peracchi A (2005) DNA catalysis: potential, limitations, open questions. ChemBioChem 6:1316–1322 Peracchi A (2005) DNA catalysis: potential, limitations, open questions. ChemBioChem 6:1316–1322
59.
Zurück zum Zitat Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33:6151–6163 Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33:6151–6163
60.
Zurück zum Zitat Baum DA, Silverman SK (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 65:2156–2174 Baum DA, Silverman SK (2008) Deoxyribozymes: useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci 65:2156–2174
61.
Zurück zum Zitat Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: Past, present, and future. Langmuir 25:13840–13851 Sardar R, Funston AM, Mulvaney P, Murray RW (2009) Gold nanoparticles: Past, present, and future. Langmuir 25:13840–13851
62.
Zurück zum Zitat Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J, Inorg Chem, pp 3081–3098 Schmid G, Corain B (2003) Nanoparticulated gold: syntheses, structures, electronics, and reactivities. Eur J, Inorg Chem, pp 3081–3098
63.
Zurück zum Zitat Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665 Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665
64.
Zurück zum Zitat Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150 Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150
65.
Zurück zum Zitat Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791 Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783–1791
66.
Zurück zum Zitat Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325 Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4:310–325
67.
Zurück zum Zitat Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103 Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103
68.
Zurück zum Zitat Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649 Sau TK, Murphy CJ (2004) Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc 126:8648–8649
69.
Zurück zum Zitat Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun 7:801–802 Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc, Chem Commun 7:801–802
70.
Zurück zum Zitat Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc, Chem Commun 16:1655–1656 Brust M, Fink J, Bethell D, Schiffrin DJ, Kiely C (1995) Synthesis and reactions of functionalized gold nanoparticles. J Chem Soc, Chem Commun 16:1655–1656
71.
Zurück zum Zitat Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660 Park J, Joo J, Kwon SG, Jang Y, Hyeon T (2007) Synthesis of monodisperse spherical nanocrystals. Angew Chem Int Ed 46:4630–4660
72.
Zurück zum Zitat Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217 Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 103:4212–4217
73.
Zurück zum Zitat Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664 Yu YY, Chang SS, Lee CL, Wang CRC (1997) Gold nanorods: electrochemical synthesis and optical properties. J Phys Chem B 101:6661–6664
74.
Zurück zum Zitat Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067 Jana NR, Gearheart L, Murphy CJ (2001) Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J Phys Chem B 105:4065–4067
75.
Zurück zum Zitat Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317 Kim F, Song JH, Yang PD (2002) Photochemical synthesis of gold nanorods. J Am Chem Soc 124:14316–14317
76.
Zurück zum Zitat Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82 Murphy CJ, Jana NR (2002) Controlling the aspect ratio of inorganic nanorods and nanowires. Adv Mater 14:80–82
77.
Zurück zum Zitat Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962 Nikoobakht B, El-Sayed MA (2003) Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 15:1957–1962
78.
Zurück zum Zitat Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901 Perez-Juste J, Pastoriza-Santos I, Liz-Marzan LM, Mulvaney P (2005) Gold nanorods: synthesis, characterization and applications. Coord Chem Rev 249:1870–1901
79.
Zurück zum Zitat Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416 Busbee BD, Obare SO, Murphy CJ (2003) An improved synthesis of high-aspect-ratio gold nanorods. Adv Mater 15:414–416
80.
Zurück zum Zitat Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910 Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910
81.
Zurück zum Zitat Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488 Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488
82.
Zurück zum Zitat Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415 Metraux GS, Mirkin CA (2005) Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv Mater 17:412–415
83.
Zurück zum Zitat Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313 Millstone JE, Park S, Shuford KL, Qin LD, Schatz GC, Mirkin CA (2005) Observation of a quadrupole plasmon mode for a colloidal solution of gold nanoprisms. J Am Chem Soc 127:5312–5313
84.
Zurück zum Zitat Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214 Millstone JE, Metraux GS, Mirkin CA (2006) Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 16:1209–1214
85.
Zurück zum Zitat Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li XD, Xia YN (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477 Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY, Au L, Zhang H, Kimmey MB, Li XD, Xia YN (2005) Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5:473–477
86.
Zurück zum Zitat Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595 Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y (2008) Gold nanocages: synthesis, properties, and applications. Acc Chem Res 41:1587–1595
87.
Zurück zum Zitat Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924 Xia Y, Li W, Cobley CM, Chen J, Xia X, Zhang Q, Yang M, Cho EC, Brown PK (2011) Gold nanocages: from synthesis to theranostic applications. Acc Chem Res 44:914–924
88.
Zurück zum Zitat Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608 Kondo Y, Takayanagi K (2000) Synthesis and characterization of helical multi-shell gold nanowires. Science 289:606–608
89.
Zurück zum Zitat Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529 Wu B, Heidelberg A, Boland JJ (2005) Mechanical properties of ultrahigh-strength gold nanowires. Nat Mater 4:525–529
90.
Zurück zum Zitat Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346 Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346
91.
Zurück zum Zitat Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841 Vigderman L, Khanal BP, Zubarev ER (2012) Functional gold nanorods: synthesis, self-assembly, and sensing applications. Adv Mater 24:4811–4841
92.
Zurück zum Zitat Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862 Storhoff JJ, Mirkin CA (1999) Programmed materials synthesis with DNA. Chem Rev 99:1849–1862
93.
Zurück zum Zitat Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37:1814–1823 Ofir Y, Samanta B, Rotello VM (2008) Polymer and biopolymer mediated self-assembly of gold nanoparticles. Chem Soc Rev 37:1814–1823
94.
Zurück zum Zitat Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883 Prasad BLV, Sorensen CM, Klabunde KJ (2008) Gold nanoparticle superlattices. Chem Soc Rev 37:1871–1883
95.
Zurück zum Zitat Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 18:3641–3655 Niemeyer CM, Simon U (2005) DNA-based assembly of metal nanoparticles. Eur J Inorg Chem 18:3641–3655
96.
Zurück zum Zitat Lu Y, Liu JW (2007) Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323 Lu Y, Liu JW (2007) Smart nanomaterials inspired by biology: Dynamic assembly of error-free nanomaterials in response to multiple chemical and biological stimuli. Acc Chem Res 40:315–323
97.
Zurück zum Zitat Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412 Crookes-Goodson WJ, Slocik JM, Naik RR (2008) Bio-directed synthesis and assembly of nanomaterials. Chem Soc Rev 37:2403–2412
98.
Zurück zum Zitat Wang ZD, Lu Y (2009) Functional DNA directed assembly of nanomaterials for biosensing. J Mater Chem 19:1788–1798 Wang ZD, Lu Y (2009) Functional DNA directed assembly of nanomaterials for biosensing. J Mater Chem 19:1788–1798
99.
Zurück zum Zitat Kumar A, Hwang JH, Kumar S, Nam JM (2012) Tuning and assembling metal nanostructures with DNA. Chem Commun 49:2597–2609 Kumar A, Hwang JH, Kumar S, Nam JM (2012) Tuning and assembling metal nanostructures with DNA. Chem Commun 49:2597–2609
100.
Zurück zum Zitat Chen MS, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746 Chen MS, Goodman DW (2006) Catalytically active gold: from nanoparticles to ultrathin films. Acc Chem Res 39:739–746
101.
Zurück zum Zitat Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18 Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2:14–18
102.
Zurück zum Zitat Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724 Min BK, Friend CM (2007) Heterogeneous gold-based catalysis for green chemistry: Low-temperature CO oxidation and propene oxidation. Chem Rev 107:2709–2724
103.
Zurück zum Zitat Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126 Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126
104.
Zurück zum Zitat Xu WL, Shen H, Liu GK, Chen P (2009) Single-molecule kinetics of nanoparticle catalysis. Nano Res 2:911–922 Xu WL, Shen H, Liu GK, Chen P (2009) Single-molecule kinetics of nanoparticle catalysis. Nano Res 2:911–922
105.
Zurück zum Zitat Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32 Ma Z, Dai S (2011) Development of novel supported gold catalysts: a materials perspective. Nano Res 4:3–32
106.
Zurück zum Zitat Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506 Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506
107.
Zurück zum Zitat Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862 Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862
108.
Zurück zum Zitat Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192 Guo S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192
109.
Zurück zum Zitat Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557 Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P (2008) Chemical sensing and imaging with metallic nanorods. Chem Commun 5:544–557
110.
Zurück zum Zitat Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011 Porter MD, Lipert RJ, Siperko LM, Wang G, Narayanana R (2008) SERS as a bioassay platform: fundamentals, design, and applications. Chem Soc Rev 37:1001–1011
111.
Zurück zum Zitat Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045 Wilson R (2008) The use of gold nanoparticles in diagnostics and detection. Chem Soc Rev 37:2028–2045
112.
Zurück zum Zitat Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TRAC-Trend Anal Chem 28:96–109 Guo S, Dong S (2009) Biomolecule-nanoparticle hybrids for electrochemical biosensors. TRAC-Trend Anal Chem 28:96–109
113.
Zurück zum Zitat Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618 Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618
114.
Zurück zum Zitat Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1–16 Cao X, Ye Y, Liu S (2011) Gold nanoparticle-based signal amplification for biosensing. Anal Biochem 417:1–16
115.
Zurück zum Zitat Lin Y-W, Huang C-C, Chang H-T (2011) Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136:863–871 Lin Y-W, Huang C-C, Chang H-T (2011) Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 136:863–871
116.
Zurück zum Zitat Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433 Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3:1421–1433
117.
Zurück zum Zitat Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866 Jans H, Huo Q (2012) Gold nanoparticle-enabled biological and chemical detection and analysis. Chem Soc Rev 41:2849–2866
118.
Zurück zum Zitat Lei JP, Ju HX (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134 Lei JP, Ju HX (2012) Signal amplification using functional nanomaterials for biosensing. Chem Soc Rev 41:2122–2134
119.
Zurück zum Zitat Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779 Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779
120.
Zurück zum Zitat Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetricbiosensing assays. ChemBioChem 9:2363–2371 Zhao W, Brook MA, Li YF (2008) Design of gold nanoparticle-based colorimetricbiosensing assays. ChemBioChem 9:2363–2371
121.
Zurück zum Zitat Lin Y-W, Liu C-W, Chang H-T (2009) DNA functionalized gold nanoparticles for bioanalysis. Anal Methods 1:14–24 Lin Y-W, Liu C-W, Chang H-T (2009) DNA functionalized gold nanoparticles for bioanalysis. Anal Methods 1:14–24
122.
Zurück zum Zitat Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771 Zanoli LM, D’Agata R, Spoto G (2012) Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem 402:1759–1771
123.
Zurück zum Zitat Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094 Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084–1094
124.
Zurück zum Zitat Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120 Huang XH, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120
125.
Zurück zum Zitat Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2:681–693 Huang X, Jain PK, El-Sayed IH, El-Sayed MA (2007) Gold nanoparticles: interesting optical properties and recent applications in cancer diagnostic and therapy. Nanomedicine 2:681–693
126.
Zurück zum Zitat Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730 Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC (2008) Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 41:1721–1730
127.
Zurück zum Zitat Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90 Qian X, Peng X-H, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie S (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90
128.
Zurück zum Zitat Sperling RA, Rivera gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908 Sperling RA, Rivera gil P, Zhang F, Zanella M, Parak WJ (2008) Biological applications of gold nanoparticles. Chem Soc Rev 37:1896–1908
129.
Zurück zum Zitat Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782 Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38:1759–1782
130.
Zurück zum Zitat Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294 Giljohann DA, Seferos DS, Daniel WL, Massich MD, Patel PC, Mirkin CA (2010) Gold nanoparticles for biology and medicine. Angew Chem Int Ed 49:3280–3294
131.
Zurück zum Zitat Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779 Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779
132.
Zurück zum Zitat Lu Y, Liu JW (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588 Lu Y, Liu JW (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588
133.
Zurück zum Zitat Lu Y, Liu JW (2009) Catalyst-functionalized nanomaterials. WIREs Nanomed Nanobi. 1:35–46 Lu Y, Liu JW (2009) Catalyst-functionalized nanomaterials. WIREs Nanomed Nanobi. 1:35–46
134.
Zurück zum Zitat Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Delivery Rev 62:592–605 Lee JH, Yigit MV, Mazumdar D, Lu Y (2010) Molecular diagnostic and drug delivery agents based on aptamer-nanomaterial conjugates. Adv Drug Delivery Rev 62:592–605
135.
Zurück zum Zitat Sato K, Hosokawa K, Maeda M (2007) Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci 23:17–20 Sato K, Hosokawa K, Maeda M (2007) Colorimetric biosensors based on DNA-nanoparticle conjugates. Anal Sci 23:17–20
136.
Zurück zum Zitat Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2 + and Pb2 + heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46 Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2 + and Pb2 + heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46
137.
Zurück zum Zitat Wang H, Yang RH, Yang L, Tan WH (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460 Wang H, Yang RH, Yang L, Tan WH (2009) Nucleic acid conjugated nanomaterials for enhanced molecular recognition. ACS Nano 3:2451–2460
138.
Zurück zum Zitat de la Escosura-Muniz A, Medina M, Merkoci A (2011) New trends in DNA sensors for environmental applications: nanomaterials, miniaturization, and lab-on-a-chip technology. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, Cambridge de la Escosura-Muniz A, Medina M, Merkoci A (2011) New trends in DNA sensors for environmental applications: nanomaterials, miniaturization, and lab-on-a-chip technology. In: Mascini M, Palchetti I (eds) Nucleic acid biosensors for environmental pollution monitoring. Royal Society of Chemistry, Cambridge
139.
Zurück zum Zitat Sen D, Geyer CR (1998) DNA enzymes. Curr Opin Chem Biol 2:680–687 Sen D, Geyer CR (1998) DNA enzymes. Curr Opin Chem Biol 2:680–687
140.
Zurück zum Zitat Famulok M, Jenne A (1999) Catalysis based on nucleic acid structures. In: Schmidtchen FP (ed) Implementation and redesign of catalytic function in biopolymers. Springer, Berlin Famulok M, Jenne A (1999) Catalysis based on nucleic acid structures. In: Schmidtchen FP (ed) Implementation and redesign of catalytic function in biopolymers. Springer, Berlin
141.
Zurück zum Zitat Kurz M, Breaker RR (1999) In vitro selection of nucleic acid enzymes. In: Famulok M, Winnacker E-L, Wong C-H (eds) Combinatorial Chemistry in Biology. Springer, Berlin Kurz M, Breaker RR (1999) In vitro selection of nucleic acid enzymes. In: Famulok M, Winnacker E-L, Wong C-H (eds) Combinatorial Chemistry in Biology. Springer, Berlin
142.
Zurück zum Zitat Joyce GF (2001) RNA cleavage by the 10–23 DNA enzyme. Methods Enzymol 341:503–517 Joyce GF (2001) RNA cleavage by the 10–23 DNA enzyme. Methods Enzymol 341:503–517
143.
Zurück zum Zitat Bittker JA, Phillips KJ, Liu DR (2002) Recent advances in the in vitro evolution of nucleic acids. Curr Opin Chem Biol 6:367–374 Bittker JA, Phillips KJ, Liu DR (2002) Recent advances in the in vitro evolution of nucleic acids. Curr Opin Chem Biol 6:367–374
144.
Zurück zum Zitat Cairns MJ, Saravolac EG, Sun LQ (2002) Catalytic DNA: a novel tool for gene suppression. Curr Drug Targets 3:269–279 Cairns MJ, Saravolac EG, Sun LQ (2002) Catalytic DNA: a novel tool for gene suppression. Curr Drug Targets 3:269–279
145.
Zurück zum Zitat Achenbach JC, Chiuman W, Cruz RPG, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336 Achenbach JC, Chiuman W, Cruz RPG, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336
146.
Zurück zum Zitat Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836 Joyce GF (2004) Directed evolution of nucleic acid enzymes. Annu Rev Biochem 73:791–836
147.
Zurück zum Zitat Peracchi A (2004) Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol 14:47–64 Peracchi A (2004) Prospects for antiviral ribozymes and deoxyribozymes. Rev Med Virol 14:47–64
148.
Zurück zum Zitat Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681 Schubert S, Kurreck J (2004) Ribozyme- and deoxyribozyme-strategies for medical applications. Curr Drug Targets 5:667–681
149.
Zurück zum Zitat Fiammengo R, Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16:614–621 Fiammengo R, Jaschke A (2005) Nucleic acid enzymes. Curr Opin Biotechnol 16:614–621
150.
Zurück zum Zitat Lu Y (2006) Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges. Inorg Chem 45:9930–9940 Lu Y (2006) Metalloprotein and metallo-DNA/RNAzyme design: current approaches, success measures, and future challenges. Inorg Chem 45:9930–9940
151.
Zurück zum Zitat Hobartner C, Silverman SK (2007) Recent advances in DNA catalysis. Biopolymers 87:279–292 Hobartner C, Silverman SK (2007) Recent advances in DNA catalysis. Biopolymers 87:279–292
152.
Zurück zum Zitat Benson VL, Khachigian LM, Lowe HC (2008) DNAzymes and cardiovascular disease. Br J Pharmacol 154:741–748 Benson VL, Khachigian LM, Lowe HC (2008) DNAzymes and cardiovascular disease. Br J Pharmacol 154:741–748
153.
Zurück zum Zitat Dass CR, Choong PFM, Khachigian LM (2008) DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 7:243–251 Dass CR, Choong PFM, Khachigian LM (2008) DNAzyme technology and cancer therapy: cleave and let die. Mol Cancer Ther 7:243–251
154.
Zurück zum Zitat Pan WH, Clawson GA (2008) Catalytic DNAzymes: derivations and functions. Expert Opin Biol Ther 8:1071–1085 Pan WH, Clawson GA (2008) Catalytic DNAzymes: derivations and functions. Expert Opin Biol Ther 8:1071–1085
155.
Zurück zum Zitat Silverman SK (2008) Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem Commun 14:3467–3485 Silverman SK (2008) Catalytic DNA (deoxyribozymes) for synthetic applications—current abilities and future prospects. Chem Commun 14:3467–3485
156.
Zurück zum Zitat Burton AS, Lehman N (2009) DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 9:125–130 Burton AS, Lehman N (2009) DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 9:125–130
157.
Zurück zum Zitat Silverman SK (2009) Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Acc Chem Res 42:1521–1531 Silverman SK (2009) Deoxyribozymes: selection design and serendipity in the development of DNA catalysts. Acc Chem Res 42:1521–1531
158.
Zurück zum Zitat Silverman SK, Baum DA (2009) Use of deoxyribozymes in RNA research. Methods Enzymol 469:95–117 Silverman SK, Baum DA (2009) Use of deoxyribozymes in RNA research. Methods Enzymol 469:95–117
159.
Zurück zum Zitat Tan ML, Choon PFM, Dass CR (2009) Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 61:3–12 Tan ML, Choon PFM, Dass CR (2009) Cancer, chitosan nanoparticles and catalytic nucleic acids. J Pharm Pharmacol 61:3–12
160.
Zurück zum Zitat Franzen S (2010) Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Curr Opin Mol Ther 12:223–232 Franzen S (2010) Expanding the catalytic repertoire of ribozymes and deoxyribozymes beyond RNA substrates. Curr Opin Mol Ther 12:223–232
161.
Zurück zum Zitat Heinisch T, Ward TR (2010) Design strategies for the creation of artificial metalloenzymes. Curr Opin Chem Biol 14:184–199 Heinisch T, Ward TR (2010) Design strategies for the creation of artificial metalloenzymes. Curr Opin Chem Biol 14:184–199
162.
Zurück zum Zitat Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15:5423–5444 Kuwahara M, Sugimoto N (2010) Molecular evolution of functional nucleic acids with chemical modifications. Molecules 15:5423–5444
163.
Zurück zum Zitat Mastroyiannopoulos NP, Uney JB, Phylactou LA (2010) The application of ribozymes and DNAzymes in muscle and brain. Molecules 15:5460–5472 Mastroyiannopoulos NP, Uney JB, Phylactou LA (2010) The application of ribozymes and DNAzymes in muscle and brain. Molecules 15:5460–5472
164.
Zurück zum Zitat McManus SA, Li YF (2010) The structural diversity of deoxyribozymes. Molecules 15:6269–6284 McManus SA, Li YF (2010) The structural diversity of deoxyribozymes. Molecules 15:6269–6284
165.
Zurück zum Zitat Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8–17 RNA-cleaving DNAzyme. ChemBioChem 11:866–879 Schlosser K, Li YF (2010) A versatile endoribonuclease mimic made of DNA: characteristics and applications of the 8–17 RNA-cleaving DNAzyme. ChemBioChem 11:866–879
166.
Zurück zum Zitat Sigel RKO, Sigel H (2010) A stability concept for metal Ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res 43:974–984 Sigel RKO, Sigel H (2010) A stability concept for metal Ion coordination to single-stranded nucleic acids and affinities of individual sites. Acc Chem Res 43:974–984
167.
Zurück zum Zitat Deuss PJ, den Heeten R, Laan W, Kamer PCJ (2011) Bioinspired catalyst design and artificial metalloenzymes. Chem Eur J 17:4680–4698 Deuss PJ, den Heeten R, Laan W, Kamer PCJ (2011) Bioinspired catalyst design and artificial metalloenzymes. Chem Eur J 17:4680–4698
168.
Zurück zum Zitat Lau PS, Li YF (2011) Functional nucleic acids as molecular recognition elements for small organic and biological molecules. Curr Org Chem 15:557–575 Lau PS, Li YF (2011) Functional nucleic acids as molecular recognition elements for small organic and biological molecules. Curr Org Chem 15:557–575
169.
Zurück zum Zitat Sen D, Poon LCH (2011) RNA and DNA complexes with hemin Fe(III) heme are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492 Sen D, Poon LCH (2011) RNA and DNA complexes with hemin Fe(III) heme are efficient peroxidases and peroxygenases: how do they do it and what does it mean? Crit Rev Biochem Mol Biol 46:478–492
170.
Zurück zum Zitat Takezawa Y, Shionoya M (2012) Metal-mediated DNA base pairing: alternatives to hydrogen-bonded watson-crick base pairs. Acc Chem Res 45:2066–2076 Takezawa Y, Shionoya M (2012) Metal-mediated DNA base pairing: alternatives to hydrogen-bonded watson-crick base pairs. Acc Chem Res 45:2066–2076
171.
Zurück zum Zitat Lu Y (2002) New transition-metal-dependent DNA-zymes as efficient endonucleases and as selective metal biosensors. Chem Eur J 8:4589–4596 Lu Y (2002) New transition-metal-dependent DNA-zymes as efficient endonucleases and as selective metal biosensors. Chem Eur J 8:4589–4596
172.
Zurück zum Zitat Lu Y (2009) DNAzyme and aptamer sensors for on-site and real-time detection of a broad range of environmental toxins. Environ Mol Mutagen 50:534 Lu Y (2009) DNAzyme and aptamer sensors for on-site and real-time detection of a broad range of environmental toxins. Environ Mol Mutagen 50:534
173.
Zurück zum Zitat Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868 Wang G, Wang Y, Chen L, Choo J (2010) Nanomaterial-assisted aptamers for optical sensing. Biosens Bioelectron 25:1859–1868
174.
Zurück zum Zitat Roh YH, Ruiz RCH, Peng S, Lee JB, Luo D (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744 Roh YH, Ruiz RCH, Peng S, Lee JB, Luo D (2011) Engineering DNA-based functional materials. Chem Soc Rev 40:5730–5744
175.
Zurück zum Zitat Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276 Tan SJ, Campolongo MJ, Luo D, Cheng WL (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276
176.
Zurück zum Zitat Xing H, Ngo Yin W, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435 Xing H, Ngo Yin W, Xiang Y, Lu Y (2012) DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr Opin Chem Biol 16:429–435
177.
Zurück zum Zitat Willner I, Willner B, Katz E (2007) Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2–11 Willner I, Willner B, Katz E (2007) Biomolecule-nanoparticle hybrid systems for bioelectronic applications. Bioelectrochemistry 70:2–11
178.
Zurück zum Zitat Sau TK, Rogach AL, Jaeckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825 Sau TK, Rogach AL, Jaeckel F, Klar TA, Feldmann J (2010) Properties and applications of colloidal nonspherical noble metal nanoparticles. Adv Mater 22:1805–1825
179.
Zurück zum Zitat Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318:430–433 Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318:430–433
180.
Zurück zum Zitat Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle N(C8H17)(4) Au-25(SCH2CH2Ph)(18). J Am Chem Soc. 130:3754–3755 Heaven MW, Dass A, White PS, Holt KM, Murray RW (2008) Crystal structure of the gold nanoparticle N(C8H17)(4) Au-25(SCH2CH2Ph)(18). J Am Chem Soc. 130:3754–3755
181.
Zurück zum Zitat Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nature Chem 4:443–455 Hakkinen H (2012) The gold-sulfur interface at the nanoscale. Nature Chem 4:443–455
182.
Zurück zum Zitat Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609 Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609
183.
Zurück zum Zitat Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611 Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG (1996) Organization of ‘nanocrystal molecules’ using DNA. Nature 382:609–611
184.
Zurück zum Zitat Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541 Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G (2000) A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem 72:5535–5541
185.
Zurück zum Zitat Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318 Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318
186.
Zurück zum Zitat Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36 Parak WJ, Pellegrino T, Micheel CM, Gerion D, Williams SC, Alivisatos AP (2003) Conformation of oligonucleotides attached to gold nanocrystals probed by gel electrophoresis. Nano Lett 3:33–36
187.
Zurück zum Zitat Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35 Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP (2001) Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett 1:32–35
188.
Zurück zum Zitat Ackerson CJ, Sykes MT, Kornberg RD (2005) Defined DNA/nanoparticle conjugates. Proc Natl Acad Sci USA 102:13383–13385 Ackerson CJ, Sykes MT, Kornberg RD (2005) Defined DNA/nanoparticle conjugates. Proc Natl Acad Sci USA 102:13383–13385
189.
Zurück zum Zitat Claridge SA, Mastroianni AJ, Au YB, Liang HW, Micheel CM, Frechet JMJ, Alivisatos AP (2008) Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly. J Am Chem Soc 130:9598–9605 Claridge SA, Mastroianni AJ, Au YB, Liang HW, Micheel CM, Frechet JMJ, Alivisatos AP (2008) Enzymatic ligation creates discrete multinanoparticle building blocks for self-assembly. J Am Chem Soc 130:9598–9605
190.
Zurück zum Zitat Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459 Mastroianni AJ, Claridge SA, Alivisatos AP (2009) Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc 131:8455–8459
191.
Zurück zum Zitat Claridge SA, Liang HW, Basu SR, Frechet JMJ, Alivisatos AP (2008) Isolation of discrete nanoparticle—DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206 Claridge SA, Liang HW, Basu SR, Frechet JMJ, Alivisatos AP (2008) Isolation of discrete nanoparticle—DNA conjugates for plasmonic applications. Nano Lett 8:1202–1206
192.
Zurück zum Zitat Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. J Am Chem Soc 133:15284–15287 Li ZT, Cheng EJ, Huang WX, Zhang T, Yang ZQ, Liu DS, Tang ZY (2011) Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. J Am Chem Soc 133:15284–15287
193.
Zurück zum Zitat Pei H, Li F, Wan Y, Wei M, Liu HJ, Su Y, Chen N, Huang Q, Fan CH (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134:11876–11879 Pei H, Li F, Wan Y, Wei M, Liu HJ, Su Y, Chen N, Huang Q, Fan CH (2012) Designed diblock oligonucleotide for the synthesis of spatially isolated and highly hybridizable functionalization of DNA-gold nanoparticle nanoconjugates. J Am Chem Soc 134:11876–11879
194.
Zurück zum Zitat Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643 Liu JW, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643
195.
Zurück zum Zitat Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252 Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252
196.
Zurück zum Zitat Wang ZD, Zhang JQ, Ekman JM, Kenis PJA, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10:1886–1891 Wang ZD, Zhang JQ, Ekman JM, Kenis PJA, Lu Y (2010) DNA-mediated control of metal nanoparticle shape: one-pot synthesis and cellular uptake of highly stable and functional gold nanoflowers. Nano Lett 10:1886–1891
197.
Zurück zum Zitat Wang ZD, Tang LH, Tan LH, Li JH, Lu Y (2012) Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew Chem Int Ed 51:9078–9082 Wang ZD, Tang LH, Tan LH, Li JH, Lu Y (2012) Discovery of the DNA “genetic code” for abiological gold nanoparticle morphologies. Angew Chem Int Ed 51:9078–9082
198.
Zurück zum Zitat Pena SRN, Raina S, Goodrich GP, Fedoroff NV, Keating CD (2002) Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J Am Chem Soc 124:7314–7323 Pena SRN, Raina S, Goodrich GP, Fedoroff NV, Keating CD (2002) Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides. J Am Chem Soc 124:7314–7323
199.
Zurück zum Zitat Kanaras AG, Wang ZX, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed 42:191–194 Kanaras AG, Wang ZX, Bates AD, Cosstick R, Brust M (2003) Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed 42:191–194
200.
Zurück zum Zitat Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287 Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA (2006) Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 128:9286–9287
201.
Zurück zum Zitat Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306 Huo F, Lytton-Jean AKR, Mirkin CA (2006) Asymmetric functionalization of nanoparticles based on thermally addressable DNA interconnects. Adv Mater 18:2304–2306
202.
Zurück zum Zitat Zhao WA, Gao Y, Kandadai SA, Brook MA, Li YF (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45:2409–2413 Zhao WA, Gao Y, Kandadai SA, Brook MA, Li YF (2006) DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed 45:2409–2413
203.
Zurück zum Zitat Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small. 4:810–816 Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small. 4:810–816
204.
Zurück zum Zitat Xiang Y, Wang ZD, Xing H, Lu Y (2013) Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem Sci 4:398–404 Xiang Y, Wang ZD, Xing H, Lu Y (2013) Expanding DNAzyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem Sci 4:398–404
205.
Zurück zum Zitat Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126 Thaxton CS, Georganopoulou DG, Mirkin CA (2006) Gold nanoparticle probes for the detection of nucleic acid targets. Clin Chim Acta 363:120–126
206.
Zurück zum Zitat He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077 He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD (2000) Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 122:9071–9077
207.
Zurück zum Zitat Patolsky F, Ranjit KT, Lichtenstein A, Willner I (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun 12:1025–1026 Patolsky F, Ranjit KT, Lichtenstein A, Willner I (2000) Dendritic amplification of DNA analysis by oligonucleotide-functionalized Au-nanoparticles. Chem Commun 12:1025–1026
208.
Zurück zum Zitat Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760 Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760
209.
Zurück zum Zitat Zhou XC, O’Shea SJ, Li SFY (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 11:953–954 Zhou XC, O’Shea SJ, Li SFY (2000) Amplified microgravimetric gene sensor using Au nanoparticle modified oligonucleotides. Chem Commun 11:953–954
210.
Zurück zum Zitat Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73:4450–4456 Authier L, Grossiord C, Brossier P, Limoges B (2001) Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes. Anal Chem 73:4450–4456
211.
Zurück zum Zitat Cai H, Xu C, He PG, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85 Cai H, Xu C, He PG, Fang YZ (2001) Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA. J Electroanal Chem 510:78–85
212.
Zurück zum Zitat Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370 Dubertret B, Calame M, Libchaber AJ (2001) Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat Biotechnol 19:365–370
213.
Zurück zum Zitat Wang J, Xu DK, Kawde AN, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581 Wang J, Xu DK, Kawde AN, Polsky R (2001) Metal nanoparticle-based electrochemical stripping potentiometric detection of DNA hybridization. Anal Chem 73:5576–5581
214.
Zurück zum Zitat Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540 Cao YWC, Jin RC, Mirkin CA (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297:1536–1540
215.
Zurück zum Zitat Maxwell DJ, Taylor JR, Nie SM (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612 Maxwell DJ, Taylor JR, Nie SM (2002) Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc 124:9606–9612
216.
Zurück zum Zitat Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506 Park SJ, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295:1503–1506
217.
Zurück zum Zitat Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187 Ozsoz M, Erdem A, Kerman K, Ozkan D, Tugrul B, Topcuoglu N, Ekren H, Taylan M (2003) Electrochemical genosensor based on colloidal gold nanoparticles for the detection of Factor V Leiden mutation using disposable pencil graphite electrodes. Anal Chem 75:2181–2187
218.
Zurück zum Zitat Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039 Li HX, Rothberg L (2004) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039
219.
Zurück zum Zitat Li HX, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414–5417 Li HX, Rothberg LJ (2004) DNA sequence detection using selective fluorescence quenching of tagged oligonucleotide probes by gold nanoparticles. Anal Chem 76:5414–5417
220.
Zurück zum Zitat Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961 Li HX, Rothberg LJ (2004) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961
221.
Zurück zum Zitat Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4:1683–1687 Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) DNAzyme-functionalized Au nanoparticles for the amplified detection of DNA or telomerase activity. Nano Lett 4:1683–1687
222.
Zurück zum Zitat Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887 Storhoff JJ, Lucas AD, Garimella V, Bao YP, Muller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22:883–887
223.
Zurück zum Zitat Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res 33:e15 Bao YP, Huber M, Wei TF, Marla SS, Storhoff JJ, Muller UR (2005) SNP identification in unamplified human genomic DNA with gold nanoparticle probes. Nucleic Acids Res 33:e15
224.
Zurück zum Zitat Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP, Melvin T (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203 Dyadyusha L, Yin H, Jaiswal S, Brown T, Baumberg JJ, Booy FP, Melvin T (2005) Quenching of CdSe quantum dot emission, a new approach for biosensing. Chem Commun 25:3201–3203
225.
Zurück zum Zitat Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984 Endo T, Kerman K, Nagatani N, Takamura Y, Tamiya E (2005) Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor. Anal Chem 77:6976–6984
226.
Zurück zum Zitat Stoeva SI, Huo FW, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363 Stoeva SI, Huo FW, Lee JS, Mirkin CA (2005) Three-layer composite magnetic nanoparticle probes for DNA. J Am Chem Soc 127:15362–15363
227.
Zurück zum Zitat Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164 Li YA, Wark AW, Lee HJ, Corn RM (2006) Single-nucleotide polymorphism genotyping by nanoparticle-enhanced surface plasmon resonance imaging measurements of surface ligation reactions. Anal Chem 78:3158–3164
228.
Zurück zum Zitat Ray PC (2006) Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Angew Chem Int Ed 45:1151–1154 Ray PC (2006) Diagnostics of single base-mismatch DNA hybridization on gold nanoparticles by using the hyper-Rayleigh scattering technique. Angew Chem Int Ed 45:1151–1154
229.
Zurück zum Zitat Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580 Zhang J, Song SP, Zhang LY, Wang LH, Wu HP, Pan D, Fan CH (2006) Sequence-specific detection of femtomolar DNA via a chronocoulometric DNA sensor (CDS): effects of nanoparticle-mediated amplification and nanoscale control of DNA assembly at electrodes. J Am Chem Soc 128:8575–8580
230.
Zurück zum Zitat Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479 Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA (2007) Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 129:15477–15479
231.
Zurück zum Zitat Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:2888–2895 Zhang J, Song SP, Wang LH, Pan D, Fan CH (2007) A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc 2:2888–2895
232.
Zurück zum Zitat Song SP, Liang ZQ, Zhang J, Wang LH, Li GX, Fan CH (2009) Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angew Chem Int Ed 48:8670–8674 Song SP, Liang ZQ, Zhang J, Wang LH, Li GX, Fan CH (2009) Gold-Nanoparticle-Based Multicolor Nanobeacons for Sequence-Specific DNA Analysis. Angew Chem Int Ed 48:8670–8674
233.
Zurück zum Zitat Xue X, Xu W, Wang F, Liu X (2009) Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions. J Am Chem Soc 131:11668–11669 Xue X, Xu W, Wang F, Liu X (2009) Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions. J Am Chem Soc 131:11668–11669
234.
Zurück zum Zitat Bai X, Shao C, Han X, Li Y, Guan Y, Deng Z (2010) Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens Bioelectron 25:1984–1988 Bai X, Shao C, Han X, Li Y, Guan Y, Deng Z (2010) Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens Bioelectron 25:1984–1988
235.
Zurück zum Zitat Chen JIL, Chen Y, Ginger DS (2010) plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132:9600–9601 Chen JIL, Chen Y, Ginger DS (2010) plasmonic nanoparticle dimers for optical sensing of DNA in complex media. J Am Chem Soc 132:9600–9601
236.
Zurück zum Zitat Jung YL, Jung C, Parab H, Cho D-Y, Park HG (2011) Colorimetric SNP genotyping based on allele-specific PCR by using a thiol-labeled primer. ChemBioChem 12:1387–1390 Jung YL, Jung C, Parab H, Cho D-Y, Park HG (2011) Colorimetric SNP genotyping based on allele-specific PCR by using a thiol-labeled primer. ChemBioChem 12:1387–1390
237.
Zurück zum Zitat Oh JH, Lee JS (2011) Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal Chem 83:7364–7370 Oh JH, Lee JS (2011) Designed hybridization properties of DNA-gold nanoparticle conjugates for the ultraselective detection of a single-base mutation in the breast cancer gene BRCA1. Anal Chem 83:7364–7370
238.
Zurück zum Zitat Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510 Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510
239.
Zurück zum Zitat Deng H, Xu Y, Liu YH, Che ZJ, Guo HL, Shan SX, Sun Y, Liu XF, Huang KY, Ma XW, Wu Y, Liang XJ (2012) Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 84:1253–1258 Deng H, Xu Y, Liu YH, Che ZJ, Guo HL, Shan SX, Sun Y, Liu XF, Huang KY, Ma XW, Wu Y, Liang XJ (2012) Gold nanoparticles with asymmetric polymerase chain reaction for colorimetric detection of DNA sequence. Anal Chem 84:1253–1258
240.
Zurück zum Zitat Gao F, Zhu Z, Lei J, Geng Y, Ju H (2013) Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosens Bioelectron 39:199–203 Gao F, Zhu Z, Lei J, Geng Y, Ju H (2013) Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. Biosens Bioelectron 39:199–203
241.
Zurück zum Zitat Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2 + detection. J Am Chem Soc 126:12298–12305 Liu JW, Lu Y (2004) Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2 + detection. J Am Chem Soc 126:12298–12305
242.
Zurück zum Zitat Liu JW, Lu Y (2004) Optimization of a Pb2 + -directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem Mater 16:3231–3238 Liu JW, Lu Y (2004) Optimization of a Pb2 + -directed gold nanoparticle/DNAzyme assembly and its application as a colorimetric biosensor for Pb2+. Chem Mater 16:3231–3238
243.
Zurück zum Zitat Liu JW, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14:343–354 Liu JW, Lu Y (2004) Colorimetric biosensors based on DNAzyme-assembled gold nanoparticles. J Fluoresc 14:343–354
244.
Zurück zum Zitat Liu JW, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632 Liu JW, Lu Y (2004) Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem 76:1627–1632
245.
Zurück zum Zitat Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683 Liu J, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677–12683
246.
Zurück zum Zitat Liu JW, Lu Y (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 4:3435–3441 Liu JW, Lu Y (2006) Design of asymmetric DNAzymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem 4:3435–3441
247.
Zurück zum Zitat Liu J, Lu Y (2007) Colorimetric Cu2 + detection with a ligation DNAzyme and nanopairticles. Chem Commun 46:4872–4874 Liu J, Lu Y (2007) Colorimetric Cu2 + detection with a ligation DNAzyme and nanopairticles. Chem Commun 46:4872–4874
248.
Zurück zum Zitat Lee JH, Wang ZD, Liu JW, Lu Y (2008) Highly sensitive and selective colorimetric sensors for Uranyl (UO22 +): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226 Lee JH, Wang ZD, Liu JW, Lu Y (2008) Highly sensitive and selective colorimetric sensors for Uranyl (UO22 +): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226
249.
Zurück zum Zitat Shen L, Chen Z, Li YH, He SL, Xie SB, Xu XD, Liang ZW, Meng X, Li Q, Zhu ZW, Li MX, Le XC, Shao YH (2008) Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal Chem 80:6323–6328 Shen L, Chen Z, Li YH, He SL, Xie SB, Xu XD, Liang ZW, Meng X, Li Q, Zhu ZW, Li MX, Le XC, Shao YH (2008) Electrochemical DNAzyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal Chem 80:6323–6328
250.
Zurück zum Zitat Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267 Wang ZD, Lee JH, Lu Y (2008) Label-free colorimetric detection of lead ions with a nanomolar detection limit and tunable dynamic range by using gold nanoparticles and DNAzyme. Adv Mater 20:3263–3267
251.
Zurück zum Zitat Wei H, Li BL, Li J, Dong SJ, Wang EK (2008) DNAzyme-based colorimetric sensing of lead (Pb(2 +)) using unmodified gold nanoparticle probes. Nanotechnology 19:095501 Wei H, Li BL, Li J, Dong SJ, Wang EK (2008) DNAzyme-based colorimetric sensing of lead (Pb(2 +)) using unmodified gold nanoparticle probes. Nanotechnology 19:095501
252.
Zurück zum Zitat Zhao WA, Lam JCF, Chiuman W, Brook MA, Li YF (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4:810–816 Zhao WA, Lam JCF, Chiuman W, Brook MA, Li YF (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4:810–816
253.
Zurück zum Zitat Fu R, Li T, Park HG (2009) An ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection. Chem Commun 39:5838–5840 Fu R, Li T, Park HG (2009) An ultrasensitive DNAzyme-based colorimetric strategy for nucleic acid detection. Chem Commun 39:5838–5840
254.
Zurück zum Zitat Zhou WH, Zhu CL, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR (2009) Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes. Chem Commun 28:6845–6847 Zhou WH, Zhu CL, Lu CH, Guo XC, Chen FR, Yang HH, Wang XR (2009) Amplified detection of protein cancer biomarkers using DNAzyme functionalized nanoprobes. Chem Commun 28:6845–6847
255.
Zurück zum Zitat Fang ZY, Huang J, Lie PC, Xiao Z, Ouyang CY, Wu Q, Wu YX, Liu GD, Zeng LW (2010) Lateral flow nucleic acid biosensor for Cu2 + detection in aqueous solution with high sensitivity and selectivity. Chem Commun 46:9043–9045 Fang ZY, Huang J, Lie PC, Xiao Z, Ouyang CY, Wu Q, Wu YX, Liu GD, Zeng LW (2010) Lateral flow nucleic acid biosensor for Cu2 + detection in aqueous solution with high sensitivity and selectivity. Chem Commun 46:9043–9045
256.
Zurück zum Zitat Mazumdar D, Liu JW, Lu G, Zhou JZ, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418 Mazumdar D, Liu JW, Lu G, Zhou JZ, Lu Y (2010) Easy-to-use dipstick tests for detection of lead in paints using non-cross-linked gold nanoparticle-DNAzyme conjugates. Chem Commun 46:1416–1418
257.
Zurück zum Zitat Wang Y, Yang F, Yang XR (2010) Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology 21:205502 Wang Y, Yang F, Yang XR (2010) Label-free colorimetric biosensing of copper(II) ions with unimolecular self-cleaving deoxyribozymes and unmodified gold nanoparticle probes. Nanotechnology 21:205502
258.
Zurück zum Zitat Yang XR, Xu J, Tang XM, Liu HX, Tian DB (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2 + ions. Chem Commun 46:3107–3109 Yang XR, Xu J, Tang XM, Liu HX, Tian DB (2010) A novel electrochemical DNAzyme sensor for the amplified detection of Pb2 + ions. Chem Commun 46:3107–3109
259.
Zurück zum Zitat Yin BC, Zuo P, Huo H, Zhong XH, Ye BC (2010) DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 401:47–52 Yin BC, Zuo P, Huo H, Zhong XH, Ye BC (2010) DNAzyme self-assembled gold nanoparticles for determination of metal ions using fluorescence anisotropy assay. Anal Biochem 401:47–52
260.
Zurück zum Zitat Kim JH, Han SH, Chung BH (2011) Improving Pb(2 +) detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens Bioelectron 26:2125–2129 Kim JH, Han SH, Chung BH (2011) Improving Pb(2 +) detection using DNAzyme-based fluorescence sensors by pairing fluorescence donors with gold nanoparticles. Biosens Bioelectron 26:2125–2129
261.
Zurück zum Zitat Liang JF, Chen ZB, Guo L, Li LD (2011) Electrochemical sensing of l-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites. Chem Commun 47:5476–5478 Liang JF, Chen ZB, Guo L, Li LD (2011) Electrochemical sensing of l-histidine based on structure-switching DNAzymes and gold nanoparticle-graphene nanosheet composites. Chem Commun 47:5476–5478
262.
Zurück zum Zitat Lin DJ, Wu J, Yan F, Deng SY, Ju HX (2011) Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal Chem 83:5214–5221 Lin DJ, Wu J, Yan F, Deng SY, Ju HX (2011) Ultrasensitive immunoassay of protein biomarker based on electrochemiluminescent quenching of quantum dots by hemin bio-bar-coded nanoparticle tags. Anal Chem 83:5214–5221
263.
Zurück zum Zitat Miao XM, Ling LS, Shuai XT (2011) Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique. Chem Commun 47:4192–4194 Miao XM, Ling LS, Shuai XT (2011) Ultrasensitive detection of lead(II) with DNAzyme and gold nanoparticles probes by using a dynamic light scattering technique. Chem Commun 47:4192–4194
264.
Zurück zum Zitat Wang C, Wu J, Zong C, Ju HX, Yan F (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136:4295–4300 Wang C, Wu J, Zong C, Ju HX, Yan F (2011) Highly sensitive rapid chemiluminescent immunoassay using the DNAzyme label for signal amplification. Analyst 136:4295–4300
265.
Zurück zum Zitat Wang HL, Ou LML, Suo YR, Yu HZ (2011) Computer-readable DNAzyme assay on disc for ppb-level lead detection. Anal Chem 83:1557–1563 Wang HL, Ou LML, Suo YR, Yu HZ (2011) Computer-readable DNAzyme assay on disc for ppb-level lead detection. Anal Chem 83:1557–1563
266.
Zurück zum Zitat Wang L, Jin Y, Deng J, Chen GZ (2011) Gold nanorods-based FRET assay for sensitive detection of Pb2 + using 8-17DNAzyme. Analyst 136:5169–5174 Wang L, Jin Y, Deng J, Chen GZ (2011) Gold nanorods-based FRET assay for sensitive detection of Pb2 + using 8-17DNAzyme. Analyst 136:5169–5174
267.
Zurück zum Zitat Wang YL, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396 Wang YL, Irudayaraj J (2011) A SERS DNAzyme biosensor for lead ion detection. Chem Commun 47:4394–4396
268.
Zurück zum Zitat Yuan YL, Gou XX, Yuan R, Chai YQ, Zhuo Y, Mao L, Gan XX (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240 Yuan YL, Gou XX, Yuan R, Chai YQ, Zhuo Y, Mao L, Gan XX (2011) Electrochemical aptasensor based on the dual-amplification of G-quadruplex horseradish peroxidase-mimicking DNAzyme and blocking reagent-horseradish peroxidase. Biosens Bioelectron 26:4236–4240
269.
Zurück zum Zitat Jo H, Lee S, Min K, Ban C (2012) Detection of the strand exchange reaction using DNAzyme and Thermotoga maritima recombinase A. Anal Biochem 421:313–320 Jo H, Lee S, Min K, Ban C (2012) Detection of the strand exchange reaction using DNAzyme and Thermotoga maritima recombinase A. Anal Biochem 421:313–320
270.
Zurück zum Zitat Li CL, Huang CC, Chen WH, Chiang CK, Chang HT (2012) Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst 137:5222–5228 Li CL, Huang CC, Chen WH, Chiang CK, Chang HT (2012) Peroxidase mimicking DNA-gold nanoparticles for fluorescence detection of the lead ions in blood. Analyst 137:5222–5228
271.
Zurück zum Zitat Liu QY, Wei L, Wang LS, Liang AH, Jiang ZL (2012) A label-free deoxyribozymes resonance rayleigh scattering assay for trace lead(II) based on nanogold catalysis of chloroauric acid-vitamin C particle reaction. Anal Lett 45:2737–2748 Liu QY, Wei L, Wang LS, Liang AH, Jiang ZL (2012) A label-free deoxyribozymes resonance rayleigh scattering assay for trace lead(II) based on nanogold catalysis of chloroauric acid-vitamin C particle reaction. Anal Lett 45:2737–2748
272.
Zurück zum Zitat Malashikhina N, Pavlov V (2012) DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens Bioelectron 33:241–246 Malashikhina N, Pavlov V (2012) DNA-decorated nanoparticles as nanosensors for rapid detection of ascorbic acid. Biosens Bioelectron 33:241–246
273.
Zurück zum Zitat Miao XM, Ling LS, Cheng D, Shuai XT (2012) A highly sensitive sensor for Cu2 + with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst 137:3064–3069 Miao XM, Ling LS, Cheng D, Shuai XT (2012) A highly sensitive sensor for Cu2 + with unmodified gold nanoparticles and DNAzyme by using the dynamic light scattering technique. Analyst 137:3064–3069
274.
Zurück zum Zitat Miao XM, Ling LS, Shuai XT (2012) Detection of Pb2 + at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal Biochem 421:582–586 Miao XM, Ling LS, Shuai XT (2012) Detection of Pb2 + at attomole levels by using dynamic light scattering and unmodified gold nanoparticles. Anal Biochem 421:582–586
275.
Zurück zum Zitat Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2 + ions using the Pb2 + -dependent DNAzyme and Hemin/G-Quadruplex as a label. Anal Chem 84:3703–3709 Pelossof G, Tel-Vered R, Willner I (2012) Amplified surface plasmon resonance and electrochemical detection of Pb2 + ions using the Pb2 + -dependent DNAzyme and Hemin/G-Quadruplex as a label. Anal Chem 84:3703–3709
276.
Zurück zum Zitat Zhou MY, Liu Y, Tu YF, Tao GH, Yan JL (2012) DNAzyme-based turn-on chemiluminescence assays in homogenous media. Biosens Bioelectron 35:489–492 Zhou MY, Liu Y, Tu YF, Tao GH, Yan JL (2012) DNAzyme-based turn-on chemiluminescence assays in homogenous media. Biosens Bioelectron 35:489–492
277.
Zurück zum Zitat Chen JH, Zhou XM, Zeng LW (2013) Enzyme-free strip biosensor for amplified detection of Pb2 + based on a catalytic DNA circuit. Chem Commun 49:984–986 Chen JH, Zhou XM, Zeng LW (2013) Enzyme-free strip biosensor for amplified detection of Pb2 + based on a catalytic DNA circuit. Chem Commun 49:984–986
278.
Zurück zum Zitat Wen YQ, Li FBY, Dong XC, Zhang J, Xiong QH, Chen P (2013) The electrical detection of Lead ions using Gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv Healthc Mater 2:271–274 Wen YQ, Li FBY, Dong XC, Zhang J, Xiong QH, Chen P (2013) The electrical detection of Lead ions using Gold-nanoparticle- and DNAzyme-functionalized graphene device. Adv Healthc Mater 2:271–274
279.
Zurück zum Zitat Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030 Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA (2006) Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 312:1027–1030
280.
Zurück zum Zitat Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261 Zheng D, Seferos DS, Giljohann DA, Patel PC, Mirkin CA (2009) Aptamer nano-flares for molecular detection in living cells. Nano Lett 9:3258–3261
281.
Zurück zum Zitat Tack F, Noppe M, Van Dijck A, Dekeyzer N, Van Der Leede BJ, Bakker A, Wouters W, Janicot M, Brewster ME (2008) Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie 63:221–225 Tack F, Noppe M, Van Dijck A, Dekeyzer N, Van Der Leede BJ, Bakker A, Wouters W, Janicot M, Brewster ME (2008) Delivery of a DNAzyme targeting c-myc to HT29 colon carcinoma cells using a gold nanoparticulate approach. Pharmazie 63:221–225
282.
Zurück zum Zitat Yehl K, Joshi JR, Greene BL, Dyer RB, Nahta R, Salaita K (2012) Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano 6:9150–9157 Yehl K, Joshi JR, Greene BL, Dyer RB, Nahta R, Salaita K (2012) Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS Nano 6:9150–9157
283.
Zurück zum Zitat Wu PW, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135:5254–5257. doi:10.1021/ja400150v Wu PW, Hwang K, Lan T, Lu Y (2013) A DNAzyme-gold nanoparticle probe for uranyl ion in living cells. J Am Chem Soc 135:5254–5257. doi:10.​1021/​ja400150v
284.
Zurück zum Zitat Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103 Sato K, Hosokawa K, Maeda M (2003) Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc 125:8102–8103
285.
Zurück zum Zitat Zhao W, Chiuman W, Lam JCF, Brook MA, Li Y (2007) Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem Commun 36:3729–3731 Zhao W, Chiuman W, Lam JCF, Brook MA, Li Y (2007) Simple and rapid colorimetric enzyme sensing assays using non-crosslinking gold nanoparticle aggregation. Chem Commun 36:3729–3731
286.
Zurück zum Zitat Xiang Y, Lu Y (2013) An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem Commun 49:585–587 Xiang Y, Lu Y (2013) An invasive DNA approach toward a general method for portable quantification of metal ions using a personal glucose meter. Chem Commun 49:585–587
287.
Zurück zum Zitat Li HX, Rothberg L (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77:6229–6233 Li HX, Rothberg L (2005) Detection of specific sequences in RNA using differential adsorption of single-stranded oligonucleotides on gold nanoparticles. Anal Chem 77:6229–6233
288.
Zurück zum Zitat Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002 Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel F, Reinhoudt DN, Moller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002
Metadaten
Titel
DNAzyme-Functionalized Gold Nanoparticles for Biosensing
verfasst von
Yu Xiang
Peiwen Wu
Li Huey Tan
Yi Lu
Copyright-Jahr
2014
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2013_242

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.