Skip to main content
Erschienen in:

01.09.2024 | Original Paper

DNN–GA–RF prediction model for rock strength indicators based on sound level and drilling parameters

verfasst von: Zhenghao Liu, Weida Wang, Yuning Chen, Shaoshuai Shi, Junjie Wang, Ruijie Zhao

Erschienen in: Bulletin of Engineering Geology and the Environment | Ausgabe 9/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study explores the estimation of rock properties using sound levels and drilling parameters recorded during quantitative drilling. Utilizing an indoor digital drilling test system and acoustic monitoring device developed by the authors, the research involved setting varied drilling parameters for vertical drilling of various rocks and rock-like materials. The equivalent continuous A-weighted sound pressure levels were measured during the drilling process. Simultaneously, the compressive strength of the drilled rock and rock-like samples was determined in the laboratory. A regression prediction model was developed using drilling rate (V), rotational speed (N), torque (M), propulsive force (F), ground stress magnitude (σ), and equivalent continuous A-weighted sound pressure level (Leq A) as inputs and compressive strength Rc as the output. To enhance prediction accuracy, the model integrates the feature extraction capabilities of traditional random forest (RF) and deep neural network (DNN) methodologies while incorporating a genetic algorithm (GA) for feature selection and parameter optimization. Analysis of the results indicates that the prediction accuracy of the DNN–GA–RF (deep neural network–genetic algorithm–random forest) model, based on sound level and drilling parameters, significantly surpasses traditional methods such as ridge regression, support vector machine, and RF. This finding highlights the potential of the equivalent continuous A-weighted sound pressure level as an effective tool for estimating rock properties during drilling. Furthermore, the model’s integrated learning-based approach to predicting rock strength indicators offers an innovative concept and methodological basis for the nondestructive assessment of rock properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Chang XY, Wang H, Zhang YM (2023) Back analysis of rock mass parameters in tunnel engineering using machine learning techniques. Comput Geotech 163(9):105738CrossRef Chang XY, Wang H, Zhang YM (2023) Back analysis of rock mass parameters in tunnel engineering using machine learning techniques. Comput Geotech 163(9):105738CrossRef
Zurück zum Zitat Hu K, Fu H, Li J, Deng H (2023) Constitutive model for simulating the mechanical behaviour of rock under triaxial cyclic loading. Comput Geotech 159:105420CrossRef Hu K, Fu H, Li J, Deng H (2023) Constitutive model for simulating the mechanical behaviour of rock under triaxial cyclic loading. Comput Geotech 159:105420CrossRef
Zurück zum Zitat Karakurt I, Aydin G, Aydiner K (2013) Predictive modelling of noise level generated during sawing of rocks by circular diamond sawblades. Sadhana 38(3):491–511CrossRef Karakurt I, Aydin G, Aydiner K (2013) Predictive modelling of noise level generated during sawing of rocks by circular diamond sawblades. Sadhana 38(3):491–511CrossRef
Zurück zum Zitat Kivade SB, Murthy CSN, Vardhan H (2012) Prediction of penetration rate and sound level produced during percussive drilling using regression and artificial neural network. Int J Earth Sci Eng 5(6):1639–1644 Kivade SB, Murthy CSN, Vardhan H (2012) Prediction of penetration rate and sound level produced during percussive drilling using regression and artificial neural network. Int J Earth Sci Eng 5(6):1639–1644
Zurück zum Zitat Koopialipoor M, Tootoonchi H, Armaghani DJ, Mohamad ET, Hedayat A (2019) Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bull Eng Geol Env 78(8):6347–6360CrossRef Koopialipoor M, Tootoonchi H, Armaghani DJ, Mohamad ET, Hedayat A (2019) Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bull Eng Geol Env 78(8):6347–6360CrossRef
Zurück zum Zitat Koopialipoor M, Asteris PG, Mohammed AS, Alexakis DE, Mamou A, Armaghani DJ (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transp Geotech 34(9):100756CrossRef Koopialipoor M, Asteris PG, Mohammed AS, Alexakis DE, Mamou A, Armaghani DJ (2022) Introducing stacking machine learning approaches for the prediction of rock deformation. Transp Geotech 34(9):100756CrossRef
Zurück zum Zitat Kumar BR, Vardhan H, Govindaraj M (2010) Estimating rock properties using sound level during drilling: field investigation. Int J Min Mineral Eng 2(3):169–184CrossRef Kumar BR, Vardhan H, Govindaraj M (2010) Estimating rock properties using sound level during drilling: field investigation. Int J Min Mineral Eng 2(3):169–184CrossRef
Zurück zum Zitat Kumar BR, Vardhan H, Govindaraj M (2011a) Sound level produced during rock drilling vis-à-vis rock properties. Eng Geol 123(4):333–337CrossRef Kumar BR, Vardhan H, Govindaraj M (2011a) Sound level produced during rock drilling vis-à-vis rock properties. Eng Geol 123(4):333–337CrossRef
Zurück zum Zitat Kumar BR, Vardhan H, Govindaraj M (2011b) A new approach for estimation of properties of metamorphic rocks. Int J Min Mineral Eng 3(2):109–123CrossRef Kumar BR, Vardhan H, Govindaraj M (2011b) A new approach for estimation of properties of metamorphic rocks. Int J Min Mineral Eng 3(2):109–123CrossRef
Zurück zum Zitat Kumar BR, Vardhan H, Govindaraj M (2011c) Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling. Rock Mech Rock Eng 44(5):613–620CrossRef Kumar BR, Vardhan H, Govindaraj M (2011c) Prediction of uniaxial compressive strength, tensile strength and porosity of sedimentary rocks using sound level produced during rotary drilling. Rock Mech Rock Eng 44(5):613–620CrossRef
Zurück zum Zitat Lee Y, Yim J, Hong S, Min KB (2022) Application of artificial neural network for determining elastic constants of a transversely isotropic rock from a single-orientation core. Int J Rock Mech Min Sci 160(3):105277CrossRef Lee Y, Yim J, Hong S, Min KB (2022) Application of artificial neural network for determining elastic constants of a transversely isotropic rock from a single-orientation core. Int J Rock Mech Min Sci 160(3):105277CrossRef
Zurück zum Zitat Li Z, Itakura K, Ma Y (2014) Survey of measurement-while-drilling technology for small-diameter drilling machines. Electron J Geotech Eng 19:10267–10282 Li Z, Itakura K, Ma Y (2014) Survey of measurement-while-drilling technology for small-diameter drilling machines. Electron J Geotech Eng 19:10267–10282
Zurück zum Zitat Liu Z, Wang J, Guo W, Shi SJ, Zhao R (2023) Development and application of indoor digital drilling test system. Géotech Lett 13(1):1–23CrossRef Liu Z, Wang J, Guo W, Shi SJ, Zhao R (2023) Development and application of indoor digital drilling test system. Géotech Lett 13(1):1–23CrossRef
Zurück zum Zitat Pappalardo G, Mineo S (2022) Static elastic modulus of rocks predicted through regression models and Artificial Neural Network. Eng Geol 308:106829CrossRef Pappalardo G, Mineo S (2022) Static elastic modulus of rocks predicted through regression models and Artificial Neural Network. Eng Geol 308:106829CrossRef
Zurück zum Zitat Roy S, Adhikari GR (2007) Worker noise exposures from diesel and electric surface coal mining machinery. Noise Control Eng J 55(5):434–437CrossRef Roy S, Adhikari GR (2007) Worker noise exposures from diesel and electric surface coal mining machinery. Noise Control Eng J 55(5):434–437CrossRef
Zurück zum Zitat Vardhan H, Murthy CSN (2007) An experimental investigation of jackhammer drill noise with special emphasis on drilling in rocks of different compressive strengths. Noise Control Eng J 55(3):282–293CrossRef Vardhan H, Murthy CSN (2007) An experimental investigation of jackhammer drill noise with special emphasis on drilling in rocks of different compressive strengths. Noise Control Eng J 55(3):282–293CrossRef
Zurück zum Zitat Vardhan H, Adhikari GR, Raj MG (2009) Estimating rock properties using sound levels produced during drilling. Int J Rock Mech Min Sci 46(3):604–612CrossRef Vardhan H, Adhikari GR, Raj MG (2009) Estimating rock properties using sound levels produced during drilling. Int J Rock Mech Min Sci 46(3):604–612CrossRef
Zurück zum Zitat Wu ZJ, Wei RL, Chu ZF, Liu QS (2021) Real-time rock mass condition prediction with TBM tunneling big data using a novel rock–machine mutual feedback perception method. J Rock Mech Geotech Eng 13(9):1311–1325CrossRef Wu ZJ, Wei RL, Chu ZF, Liu QS (2021) Real-time rock mass condition prediction with TBM tunneling big data using a novel rock–machine mutual feedback perception method. J Rock Mech Geotech Eng 13(9):1311–1325CrossRef
Zurück zum Zitat Wu L, Ma D, Wang Z, Zhang J, Zhang B, Li J, Liao J, Ton J (2023) A deep CNN-based constitutive model for describing of statics characteristics of rock materials. Eng Fract Mech 279:109054CrossRef Wu L, Ma D, Wang Z, Zhang J, Zhang B, Li J, Liao J, Ton J (2023) A deep CNN-based constitutive model for describing of statics characteristics of rock materials. Eng Fract Mech 279:109054CrossRef
Metadaten
Titel
DNN–GA–RF prediction model for rock strength indicators based on sound level and drilling parameters
verfasst von
Zhenghao Liu
Weida Wang
Yuning Chen
Shaoshuai Shi
Junjie Wang
Ruijie Zhao
Publikationsdatum
01.09.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Bulletin of Engineering Geology and the Environment / Ausgabe 9/2024
Print ISSN: 1435-9529
Elektronische ISSN: 1435-9537
DOI
https://doi.org/10.1007/s10064-024-03854-z