Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Journal of Visualization 3/2021

15.04.2021 | Regular Paper

DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing

verfasst von: Tawfiq Chekifi, Moustafa Boukraa, Mouloud Aissani

Erschienen in: Journal of Visualization | Ausgabe 3/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Numerical simulations are performed to investigate the breakup of air bubble in flow focusing configuration; the CLSVOF (coupled level set with volume of fluid) method is employed to track the interface, which allows a better identification of the liquid–gas interface via a function called level set. The CFD simulations showed that the velocity ratio, the interfacial tension, the outer channel diameter, the continuous phase viscosity, the orifice width and length play an important role in the determination of the air bubble’s size and shape. However, at low capillary number, increasing the flow velocity ratio gives a smaller bubble size in shorter time, while the increase in interfacial tension leads to a bigger bubble. Moreover, the carrier fluid is found to slightly affect the bubbling mechanism, while the smallest bubbles were obtained with the smallest orifice size. In addition, three breakup regimes are observed in this device: disc-bubble (DB), elongated bubble (EB) and the slug bubble (SB) regime flows. This work also demonstrates that the CLSVOF is an effective method to simulate the bubbles breakup in flow focusing geometry. In addition, a comparison of our computational simulations with available experimental results reveals reasonably good agreement.

Graphic abstract

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 15 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 15 Tage kostenlos.

Literatur
Zurück zum Zitat Albadawi A, Donoghue DB, Robinson AJ, Murray DB, Delauré YMC (2013) Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multiph Flow 53:11–28 CrossRef Albadawi A, Donoghue DB, Robinson AJ, Murray DB, Delauré YMC (2013) Influence of surface tension implementation in volume of fluid and coupled volume of fluid with level set methods for bubble growth and detachment. Int J Multiph Flow 53:11–28 CrossRef
Zurück zum Zitat Antonietti M, Tauer K (2003) 90 years of polymer latexes and heterophase polymerization: more vital than ever. Macromol Chem Phys 204(2):207–219 CrossRef Antonietti M, Tauer K (2003) 90 years of polymer latexes and heterophase polymerization: more vital than ever. Macromol Chem Phys 204(2):207–219 CrossRef
Zurück zum Zitat Arias S, Legendre D, González-Cinca R (2012) Numerical simulation of bubble generation in a T-junction. Comput Fluids 56:49–60 CrossRef Arias S, Legendre D, González-Cinca R (2012) Numerical simulation of bubble generation in a T-junction. Comput Fluids 56:49–60 CrossRef
Zurück zum Zitat Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4):046302 CrossRef Baroud CN, Delville J-P, Gallaire F, Wunenburger R (2007) Thermocapillary valve for droplet production and sorting. Phys Rev E 75(4):046302 CrossRef
Zurück zum Zitat Castro-Hernández E, van Hoeve W, Lohse D, Gordillo JM (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11(12):2023–2029 CrossRef Castro-Hernández E, van Hoeve W, Lohse D, Gordillo JM (2011) Microbubble generation in a co-flow device operated in a new regime. Lab Chip 11(12):2023–2029 CrossRef
Zurück zum Zitat Chekifi T (2018) Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas Instrum 59:118–125 CrossRef Chekifi T (2018) Computational study of droplet breakup in a trapped channel configuration using volume of fluid method. Flow Meas Instrum 59:118–125 CrossRef
Zurück zum Zitat Chekifi T, Dennai B, Khelfaoui R (2015) Numerical simulation of droplet breakup, splitting and sorting in a microfluidic device. FDMP-Fluid dynamics materials processing 11(3):205–220 Chekifi T, Dennai B, Khelfaoui R (2015) Numerical simulation of droplet breakup, splitting and sorting in a microfluidic device. FDMP-Fluid dynamics materials processing 11(3):205–220
Zurück zum Zitat Chekifi T, Dennai B, Khelfaoui R, Maazouzi A (2016) Numerical and experimental investigation of fluidic microdrops manipulation by Fluidic Mono-Stable Oscillator. Int J Fluid Mech Res 43(1):50–61 CrossRef Chekifi T, Dennai B, Khelfaoui R, Maazouzi A (2016) Numerical and experimental investigation of fluidic microdrops manipulation by Fluidic Mono-Stable Oscillator. Int J Fluid Mech Res 43(1):50–61 CrossRef
Zurück zum Zitat Dollet B, van Hoeve W, Raven JP, Marmottant P, Versluis M (2008) Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys Rev Lett 100(3):034504 CrossRef Dollet B, van Hoeve W, Raven JP, Marmottant P, Versluis M (2008) Role of the channel geometry on the bubble pinch-off in flow-focusing devices. Phys Rev Lett 100(3):034504 CrossRef
Zurück zum Zitat Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64(10):2392–2400 CrossRef Fu T, Ma Y, Funfschilling D, Li HZ (2009) Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chem Eng Sci 64(10):2392–2400 CrossRef
Zurück zum Zitat Ganán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501 CrossRef Ganán-Calvo AM, Gordillo JM (2001) Perfectly monodisperse microbubbling by capillary flow focusing. Phys Rev Lett 87(27):274501 CrossRef
Zurück zum Zitat Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651 CrossRef Garstecki P, Gitlin I, DiLuzio W, Whitesides GM, Kumacheva E, Stone HA (2004) Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl Phys Lett 85(13):2649–2651 CrossRef
Zurück zum Zitat Garstecki P, Fuerstman MJ, Whitesides GM (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502 CrossRef Garstecki P, Fuerstman MJ, Whitesides GM (2005) Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys Rev Lett 94(23):234502 CrossRef
Zurück zum Zitat Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446 CrossRef Garstecki P, Fuerstman MJ, Stone HA, Whitesides GM (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446 CrossRef
Zurück zum Zitat Kim J, Lowengrub J (2004) Interfaces and multicomponent fluids. Encyclopedia of Mathematical Physics, pp. 135–144 Kim J, Lowengrub J (2004) Interfaces and multicomponent fluids. Encyclopedia of Mathematical Physics, pp. 135–144
Zurück zum Zitat Lu Y, Fu T, Zhu C, Ma Y, Li HZ (2014) Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity. Chem Eng Sci 105:213–219 CrossRef Lu Y, Fu T, Zhu C, Ma Y, Li HZ (2014) Scaling of the bubble formation in a flow-focusing device: role of the liquid viscosity. Chem Eng Sci 105:213–219 CrossRef
Zurück zum Zitat Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729 CrossRef Mezzenga R, Schurtenberger P, Burbidge A, Michel M (2005) Understanding foods as soft materials. Nat Mater 4(10):729 CrossRef
Zurück zum Zitat Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136 MathSciNetCrossRef Sussman M (2003) A second order coupled level set and volume-of-fluid method for computing growth and collapse of vapor bubbles. J Comput Phys 187(1):110–136 MathSciNetCrossRef
Zurück zum Zitat Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337 MathSciNetCrossRef Sussman M, Puckett EG (2000) A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. J Comput Phys 162(2):301–337 MathSciNetCrossRef
Zurück zum Zitat Tadros TF (1993) Industrial applications of dispersions. Adv Coll Interface Sci 46:1–47 CrossRef Tadros TF (1993) Industrial applications of dispersions. Adv Coll Interface Sci 46:1–47 CrossRef
Zurück zum Zitat van Hoeve W, Dollet B, Versluis M, Lohse D (2011) Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Phys Fluids 23(9):092001 CrossRef van Hoeve W, Dollet B, Versluis M, Lohse D (2011) Microbubble formation and pinch-off scaling exponent in flow-focusing devices. Phys Fluids 23(9):092001 CrossRef
Zurück zum Zitat Wang ZL (2015) Speed up bubbling in a tapered co-flow geometry. Chem Eng J 263:346–355 CrossRef Wang ZL (2015) Speed up bubbling in a tapered co-flow geometry. Chem Eng J 263:346–355 CrossRef
Zurück zum Zitat Wang K, Xie L, Lu Y, Luo G (2013) Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci 100:486–495 CrossRef Wang K, Xie L, Lu Y, Luo G (2013) Generating microbubbles in a co-flowing microfluidic device. Chem Eng Sci 100:486–495 CrossRef
Zurück zum Zitat Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368 CrossRef Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368 CrossRef
Zurück zum Zitat Yobas L, Martens S, Ong W-L, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079 CrossRef Yobas L, Martens S, Ong W-L, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6(8):1073–1079 CrossRef
Metadaten
Titel
DNS using CLSVOF method of single micro-bubble breakup and dynamics in flow focusing
verfasst von
Tawfiq Chekifi
Moustafa Boukraa
Mouloud Aissani
Publikationsdatum
15.04.2021
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Visualization / Ausgabe 3/2021
Print ISSN: 1343-8875
Elektronische ISSN: 1875-8975
DOI
https://doi.org/10.1007/s12650-020-00715-1

Weitere Artikel der Ausgabe 3/2021

Journal of Visualization 3/2021 Zur Ausgabe

Premium Partner