Skip to main content
Log in

Persistence Modules on Commutative Ladders of Finite Type

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

We study persistence modules defined on commutative ladders. This class of persistence modules frequently appears in topological data analysis, and the theory and algorithm proposed in this paper can be applied to these practical problems. A new algebraic framework deals with persistence modules as representations on associative algebras and the Auslander–Reiten theory is applied to develop the theoretical and algorithmic foundations. In particular, we prove that the commutative ladders of length less than 5 are representation-finite and explicitly show their Auslander–Reiten quivers. Furthermore, a generalization of persistence diagrams is introduced by using Auslander–Reiten quivers. We provide an algorithm for computing persistence diagrams for the commutative ladders of length 3 by using the structure of Auslander–Reiten quivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras 1: Techniques of Representation Theory. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  2. Auslander, M., Reiten, I., Smalø, S.: Representation Theory of Artin Algebras. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  3. Bubenik, P., Scott, J.: Categorification of persistent homology. Discrete Comput. Geom. 51(3), 600–627 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46, 255–308 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Carlsson, G., de Silva, V.: Zigzag persistence. Found. Comput. Math. 10, 367–405 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Carlsson, G., Zomorodian, A.: The theory of multidimensional persistence. Discrete Comput. Geom. 42, 71–93 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  7. CGAL. Computational Geometry Algorithms Library. http://www.cgal.org/. Accessed 21 Oct 2015

  8. Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L., Oudot, S.: Proximity of persistence modules and their diagrams. In: Proceedings of 25th Annual Symposium on Computational Geometry, pp. 237–246 (2009)

  9. Chistov, A., Ivanyos, G., Karpinski, M.: Polynomial time algorithms for modules over finite dimensional algebras. In: Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 68–74. ACM, New York (1997)

  10. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updating persistence in linear time. In: SCG ’06 Proceedings of the 22nd Annual Symposium on Computational Geometry, pp. 119–126 (2006)

  11. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37, 103–120 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Crawley-Boevey, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14, 1550066 (2015)

    Article  MathSciNet  Google Scholar 

  13. Edelsbrunner, H.: The union of balls and its dual shape. Discrete Comput. Geom. 13, 415–440 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. AMS, Providence, RI (2010)

    Google Scholar 

  15. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. Discrete Comput. Geom. 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Escolar, E.G., Hiraoka, Y.: Computing persistence modules on commutative ladders of finite type. Lecture Notes in Computer Science, vol. 8592, pp. 144–151. Springer, Berlin (2014)

    Google Scholar 

  17. Gabriel, P.: Unzerlegbare Darstellungen I. Manuscr. Math. 6, 71–103 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gameiro, M., Hiraoka, Y., Izumi, S., Kramar, M., Mischaikow, K., Nanda, V.: Topological measurement of protein compressibility via persistence diagrams. Japan J. Ind. Appl. Math. 32, 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)

    Book  MATH  Google Scholar 

  20. Leszczyński, Z., Skowroński, A.: Tame triangular matrix algebras. Colloq. Math. 86, 259–303 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Lux, K.M., Szőoke, M.: Computing decompositions of modules over finite-dimensional algebras. Exp. Math. 16, 1–6 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mischaikow, K., Nanda, V.: Morse theory for filtrations and efficient computation of persistent homology. Discrete Comput. Geom. 50, 330–353 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E.G., Matsue K., Nishiura, Y.: Hierarchical structures of amorphous solids characterized by persistent homology. http://arxiv.org/abs/1501.03611

  24. Nakamura, T., Hiraoka, Y., Hirata, A., Escolar, E.G., Nishiura, Y.: Persistent homology and many-body atomic structure for medium-range order in the glass. Nanotechnology 26, 304001 (2015)

  25. Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984)

  26. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hideto Asashiba, Hiroyuki Ochiai, and Dai Tamaki for valuable discussions and comments. This work is partially supported by JSPS Grant-in-Aid (24684007) and JST Mathematics CREST (15656429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuaki Hiraoka.

Additional information

Editor in Charge: Herbert Edelsbrunner

Appendix: The Auslander–Reiten Quivers of \(\textit{CL}(\tau _n)\) with \(n\le 4\)

Appendix: The Auslander–Reiten Quivers of \(\textit{CL}(\tau _n)\) with \(n\le 4\)

See Figs. 13, 14, 15, 16, 17, 18, 19, and 20.

Fig. 13
figure 13

The Auslander–Reiten quiver of \(\textit{CL}(f)\)

Fig. 14
figure 14

The Auslander–Reiten quiver of \(\textit{CL}(ff)\)

Fig. 15
figure 15

The Auslander–Reiten quiver of \(\textit{CL}(fb)\)

Fig. 16
figure 16

The Auslander–Reiten quiver of \(\textit{CL}(bf)\)

Fig. 17
figure 17

The Auslander–Reiten quiver of \(\textit{CL}(fff)\)

Fig. 18
figure 18

The Auslander–Reiten quiver of \(\textit{CL}(fbb)\)

Fig. 19
figure 19

The Auslander–Reiten quiver of \(\textit{CL}(bfb)\)

Fig. 20
figure 20

The Auslander–Reiten quiver of \(\textit{CL}(bbf)\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escolar, E.G., Hiraoka, Y. Persistence Modules on Commutative Ladders of Finite Type. Discrete Comput Geom 55, 100–157 (2016). https://doi.org/10.1007/s00454-015-9746-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-015-9746-2

Keywords

Navigation