skip to main content
research-article

Multilevel algorithms for linear ordering problems

Authors Info & Claims
Published:23 February 2009Publication History
Skip Abstract Section

Abstract

Linear ordering problems are combinatorial optimization problems that deal with the minimization of different functionals by finding a suitable permutation of the graph vertices. These problems are widely used and studied in many practical and theoretical applications. In this paper, we present a variety of linear--time algorithms for these problems inspired by the Algebraic Multigrid approach, which is based on weighted-edge contraction. The experimental result for four such problems turned out to be better than every known result in almost all cases, while the short (linear) running time of the algorithms enables testing very large graphs.

References

  1. Bar-Yehuda, R., Even, G., Feldman, J., and Naor, J. 2001. Computing an optimal orientation of a balanced decomposition tree for linear arrangement problems. J. Graph Algorithms Appl. 5, 4, 1--27.Google ScholarGoogle ScholarCross RefCross Ref
  2. Barnard, S., Pothen, A., and Simon, H. 1995. A spectral algorithm for envelope reduction of sparse matrices. Numerical Linear Algebra Appl. 2, 4, 317--334.Google ScholarGoogle ScholarCross RefCross Ref
  3. Brandt, A. 1986. Algebraic multigrid theory: The symmetric case. J. Appl. Math. Comp. 19, 23--56. Preliminary proceedings of the International Multigrid Conference, April 6--8, 1983, Copper Mountain, CO. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. Brandt, A. 2001. Multiscale scientific computation: Review 2001. In Multiscale and Multiresolution Methods (Proceeding of the Yosemite Educational Symposium, October 2000), T. Barth, R. Haimes, and T. Chan, Eds. Springer-Verlag.Google ScholarGoogle Scholar
  5. Brandt, A. and Ron, D. 2003. Chapter 1 : Multigrid solvers and multilevel optimization strategies. In Multilevel Optimization and VLSICAD, J. Cong and J. R. Shinnerl, Eds. Kluwer, Boston, MA.Google ScholarGoogle Scholar
  6. Brandt, A., McCormick, S., and Ruge, J. 1982. Algebraic multigrid (AMG) for automatic multigrid solution with application to geodetic computations. Tech. Rep., Institute for Computational Studies, Fort Collins, CO, POB 1852.Google ScholarGoogle Scholar
  7. Brandt, A., McCormick, S., and Ruge, J. 1984. Algebraic multigrid (AMG) for sparse matrix equations. In Sparsity and its Applications, D. J. Evans, Ed. Cambridge University Press, Cambridge. 257--284.Google ScholarGoogle Scholar
  8. Brandt, A., Ron, D., and Amit, D. 1986. Multi-level approaches to discrete-state and stochastic problems. In Multigrid Methods II, W. Hackbush and U. Trottenberg, Eds. Springer-Verlag, New York, 66--99.Google ScholarGoogle Scholar
  9. Briggs, W. L., Henson, V. E., and McCormick, S. F. 2000. A multigrid tutorial: second edition. Society for Industrial and Applied Mathematics, Philadelphia, PA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. Campos, V., Glover, F., Laguna, M., and Martí, R. 2001. An experimental evaluation of a scatter search for the linear ordering problem. J. Global Optimization 21, 4, 397--414. Google ScholarGoogle ScholarDigital LibraryDigital Library
  11. Caprara, A. and González, J. J. S. 2005. Laying out sparse graphs with provably minimum bandwidth. INFORMS J. Comput. 17, 3, 356--373. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. Cheng, C.-K. 1987. Linear placement algorithm and applications to VLSI design. Network 17, 4, 439--464. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. Corso, G. M. D. and Romani, F. 2001a. Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices. Numerical Algorithms 28, 1--4 (Dec.), 117--136.Google ScholarGoogle ScholarCross RefCross Ref
  14. Corso, G. M. D. and Romani, F. 2001b. Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices. Tech. Rep. TR-01-02, Universitá di Piza, Dipartimento di Informatica.Google ScholarGoogle Scholar
  15. Cuthill, E. and McKee, J. 1969. Reducing the bandwidth of sparse symmetric matrices. In Proceedings of the 1969 24th national conference. ACM Press, New York. 157--172. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. Davis, T. 1997. University of florida sparse matrix collection. NA Digest 97, 23.Google ScholarGoogle Scholar
  17. Díaz, J., Petit, J., and Serna, M. 2002. A survey of graph layout problems. ACM Comput. Surv. 34, 3, 313--356. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. Dueck, G. W. and Jeffs, J. 1995. A heuristic bandwidth reduction algorithm. J. Combinatorial Math. Combinatorial Comput. 18, 97--108.Google ScholarGoogle Scholar
  19. Garey, M. R., Johnson, D. S., and Stockmeyer, L. 1974. Some simplified np-complete problems. In STOC'74: Proceedings of the 6th Annual ACM Symposium on Theory of Computing. ACM Press, New York. 47--63. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. George, A. and Pothen, A. 1997. An analysis of spectral envelope reduction via quadratic assignment problems. SIAM J. Matrix Analysis Appl. 18, 3, 706--732. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. Horton, S. B. 1997. The optimal linear arrangement problem: Algorithms and approximation. Ph.D. thesis, Georgia Institute of Technology. Google ScholarGoogle ScholarDigital LibraryDigital Library
  22. Hu, Y. F. and Scott, J. A. 2001. A multilevel algorithm for wavefront reduction. SIAM J. Sci. Comput. 23, 4, 1352--1375. Google ScholarGoogle ScholarDigital LibraryDigital Library
  23. Juvan, M. and Mohar, B. 1992. Optimal linear labelings and eigenvalues of graphs. Discrete Appl. Math. 36, 2, 153--168. Google ScholarGoogle ScholarDigital LibraryDigital Library
  24. Kirkpatrick, S. 1981. Models of disordered systems. In Lecture Notes in Physics 149, C. Castellani, Ed. Springer-Verlag, New York.Google ScholarGoogle Scholar
  25. Koren, Y. and Harel, D. 2002. Multi-scale algorithm for the linear arrangement problem. In Proceedings of 28th International Workshop on Graph-Theoretic Concepts. Google ScholarGoogle ScholarDigital LibraryDigital Library
  26. Lai, Y. and Williams, K. 1999. A survey of solved problems and applications on bandwidth, edgesum, and profile of graphs. J. Graph Theory 31, 75--94. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. Lim, A., Rodrigues, B., and Xiao, F. 2006. Heuristics for matrix bandwidth reduction. Europ. J. Operational Res. 174, 1, 69--91.Google ScholarGoogle ScholarCross RefCross Ref
  28. Martí, R., M., L., F., G., and Campos, V. 2001. Reducing the bandwidth of a sparse matrix with tabu search. Eur. J. Oper. Res. 135, 2, 211--220.Google ScholarGoogle ScholarCross RefCross Ref
  29. Mehlhorn, K. and Näher, S. 1995. Leda: a platform for combinatorial and geometric computing. Commun. ACM 38, 1, 96--102. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. Petit, J. 2003. Experiments on the minimum linear arrangement problem. ACM J. Experimental Algorithmics, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  31. Pinana, E., Plana, I., Campos, V., and Martí, R. 2004. GRASP and path relinking for the matrix bandwidth minimization. Europ. J. Operational Res. 153, 1, 200--210.Google ScholarGoogle ScholarCross RefCross Ref
  32. Pozo, R., Dongarra, J. J., and Walker, D. W. 1993. Lapack++: a design overview of object-oriented extensions for high performance linear algebra. In Supercomputing '93: Proceedings of the 1993 ACM/IEEE Conference on Supercomputing. ACM Press, New York. 162--171. Google ScholarGoogle ScholarDigital LibraryDigital Library
  33. Ron, D. 1990. Ph.D. thesis. development of fast numerical solvers for problems in optimization and statistical mechanics. Ph.D. thesis, The Weizmann Institute of Science.Google ScholarGoogle Scholar
  34. Ron, D., Wishko-Stern, S., and Brandt, A. 2005. An algebraic multigrid based algorithm for bisectioning general graphs. Tech. Rep. MCS05-01, Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science.Google ScholarGoogle Scholar
  35. Ruge, J. and Stüben, K. 1987. Algebraic Multigrid. SIAM, 73--130.Google ScholarGoogle Scholar
  36. Safro, I. Homepage of our projects. http://www.wisdom.weizmann.ac.il/~safro.Google ScholarGoogle Scholar
  37. Safro, I., Ron, D., and Brandt, A. 2006a. Graph minimum linear arrangement by multilevel weighted edge contractions. J. Algorithms 60, 1, 24--41. Google ScholarGoogle ScholarDigital LibraryDigital Library
  38. Safro, I., Ron, D., and Brandt, A. 2006b. Multilevel algorithm for the minimum 2-sum problem. J. Graph Algorithms Appl. 10, 2, 237--258.Google ScholarGoogle ScholarCross RefCross Ref
  39. Shahrokhi, F., Sýkora, O., Székely, L. A., and Vrto, I. 2001. On bipartite drawings and the linear arrangement problem. SIAM J. Comput. 30, 6, 1773--1789. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Sharon, E., Brandt, A., and Basri, R. 2000. Fast multiscale image segmentation. In Proceedings IEEE Conference on Computer Vision and Pattern Recognition. 70--77.Google ScholarGoogle Scholar
  41. Stüben, K. 2001a. An introduction to algebraic multigrid. Academic Press, New York. 413--532.Google ScholarGoogle Scholar
  42. Stüben, K. 2001b. A review of algebraic multigrid. J. Comput. Appl. Math. 128, 1-2, 281--309. Google ScholarGoogle ScholarDigital LibraryDigital Library

Index Terms

  1. Multilevel algorithms for linear ordering problems

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal of Experimental Algorithmics
      ACM Journal of Experimental Algorithmics  Volume 13, Issue
      2009
      482 pages
      ISSN:1084-6654
      EISSN:1084-6654
      DOI:10.1145/1412228
      Issue’s Table of Contents

      Copyright © 2009 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 23 February 2009
      • Accepted: 1 December 2007
      • Revised: 1 September 2007
      • Received: 1 April 2007
      Published in jea Volume 13, Issue

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader