Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.11.2017 | Ausgabe 2/2018

Empirical Software Engineering 2/2018

Domain-specific cross-language relevant question retrieval

Zeitschrift:
Empirical Software Engineering > Ausgabe 2/2018
Autoren:
Bowen Xu, Zhenchang Xing, Xin Xia, David Lo, Shanping Li
Wichtige Hinweise
Communicated by: Romain Robbes, Christian Bird and Emily Hill

Abstract

Chinese developers often cannot effectively search questions in English, because they may have difficulties in translating technical words from Chinese to English and formulating proper English queries. For the purpose of helping Chinese developers take advantage of the rich knowledge base of Stack Overflow and simplify the question retrieval process, we propose an automated cross-language relevant question retrieval (CLRQR) system to retrieve relevant English questions for a given Chinese question. CLRQR first extracts essential information (both Chinese and English) from the title and description of the input Chinese question, then performs domain-specific translation of the essential Chinese information into English, and finally formulates an English query for retrieving relevant questions in a repository of English questions from Stack Overflow. We propose three different retrieval algorithms (word-embedding, word-matching, and vector-space-model based methods) that exploit different document representations and similarity metrics for question retrieval. To evaluate the performance of our approach and investigate the effectiveness of different retrieval algorithms, we propose four baseline approaches based on the combination of different sources of query words, query formulation mechanisms and search engines. We randomly select 80 Java, 20 Python and 20 .NET questions in SegmentFault and V2EX (two Chinese Q&A websites for computer programming) as the query Chinese questions. We conduct a user study to evaluate the relevance of the retrieved English questions using CLRQR with different retrieval algorithms and the four baseline approaches. The experiment results show that CLRQR with word-embedding based retrieval achieves the best performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2018

Empirical Software Engineering 2/2018 Zur Ausgabe

Premium Partner

    Bildnachweise