Skip to main content
Erschienen in: Journal of Polymer Research 12/2015

01.12.2015 | Original Paper

Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites

verfasst von: Benping Wang, Xianjing Gong, Jingqing Li, Yingrui Shang, Dean Shi, Jesper de Claville Christiansen, Donghong Yu, Shichun Jiang

Erschienen in: Journal of Polymer Research | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Poly (vinylidene fluoride) (PVDF)/graphene composites were prepared through the melt blending method. The growths of PVDF spherulites in the composites at various temperatures were observed by means of polarized optical microscope (POM), and the melting behaviors were investigated with differential scanning calorimetry (DSC). The POM images showed that the spherulites morphology of PVDF in both pure PVDF and the composite samples presented the same well-defined Maltese-cross texture, and the radial growth rates of PVDF spherulites decreased with increasing crystallization temperature. Two equilibrium melting temperatures of PVDF were obtained and the equilibrium melting temperature of the samples crystallized above 160 °C was higher than that crystallized below 160 °C, which was attributed to the different crystal structures. Zero growth temperature of native PVDF spherulite was obtained according to the samples that crystallized above 160 °C. There is no obvious influence of adding graphene on the zero growth temperature of PVDF in the composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Coccorullo I, Pantani R, Titomanlio G (2008) Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules 41(23):9214–9223CrossRef Coccorullo I, Pantani R, Titomanlio G (2008) Spherulitic nucleation and growth rates in an iPP under continuous shear flow. Macromolecules 41(23):9214–9223CrossRef
2.
Zurück zum Zitat Long Y, Shanks RA, Stachurski ZH (1995) Kinetics of polymer crystallisation. Prog Polym Sci 20(4):651–701CrossRef Long Y, Shanks RA, Stachurski ZH (1995) Kinetics of polymer crystallisation. Prog Polym Sci 20(4):651–701CrossRef
3.
Zurück zum Zitat Hobbs, JK (2002) Crystallization Kinetics, in Encyclopedia of Polymer Science and Technology. Wiley Hobbs, JK (2002) Crystallization Kinetics, in Encyclopedia of Polymer Science and Technology. Wiley
4.
Zurück zum Zitat Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73CrossRef Turnbull D, Fisher JC (1949) Rate of nucleation in condensed systems. J Chem Phys 17(1):71–73CrossRef
5.
Zurück zum Zitat Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37(8):1723–1741CrossRef Hoffman JD, Weeks JJ (1962) Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene. J Chem Phys 37(8):1723–1741CrossRef
6.
Zurück zum Zitat Hoffman J, Davis GT, Lauritzen Jr J (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on Solid State Chemistry. Springer, US, pp. 497–614 Hoffman J, Davis GT, Lauritzen Jr J (1976) The rate of crystallization of linear polymers with chain folding. In: Hannay NB (ed) Treatise on Solid State Chemistry. Springer, US, pp. 497–614
7.
Zurück zum Zitat Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 24(1):3–26CrossRef Hoffman JD (1983) Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding. Polymer 24(1):3–26CrossRef
8.
Zurück zum Zitat Hoffman JD et al. (1992) Relationship between the lateral surface free energy.sigma. and the chain structure of melt-crystallized polymers. Macromolecules 25(8):2221–2229CrossRef Hoffman JD et al. (1992) Relationship between the lateral surface free energy.sigma. and the chain structure of melt-crystallized polymers. Macromolecules 25(8):2221–2229CrossRef
9.
Zurück zum Zitat Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization? Eur Phys J E 3(2):165–183CrossRef Strobl G (2000) From the melt via mesomorphic and granular crystalline layers to lamellar crystallites: A major route followed in polymer crystallization? Eur Phys J E 3(2):165–183CrossRef
10.
Zurück zum Zitat Strobl G (2005) A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur Phys J E 18(3):295–309CrossRef Strobl G (2005) A thermodynamic multiphase scheme treating polymer crystallization and melting. Eur Phys J E 18(3):295–309CrossRef
11.
Zurück zum Zitat Strobl G (2006) Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31(4):398–442CrossRef Strobl G (2006) Crystallization and melting of bulk polymers: New observations, conclusions and a thermodynamic scheme. Prog Polym Sci 31(4):398–442CrossRef
12.
Zurück zum Zitat Cho T-Y, Stille W, Strobl G (2007) Zero growth temperature and growth kinetics of crystallizing poly (ϵ-caprolactone). Colloid Polym Sci 285(8):931–934CrossRef Cho T-Y, Stille W, Strobl G (2007) Zero growth temperature and growth kinetics of crystallizing poly (ϵ-caprolactone). Colloid Polym Sci 285(8):931–934CrossRef
13.
Zurück zum Zitat Cho TY, Stille W, Strobl G (2007) Zero growth temperature of crystallizing polyethylene. Macromolecules 40(7):2596–2599CrossRef Cho TY, Stille W, Strobl G (2007) Zero growth temperature of crystallizing polyethylene. Macromolecules 40(7):2596–2599CrossRef
14.
Zurück zum Zitat Sirota EB (2007) Polymer crystallization: metastable mesophases and morphology. Macromolecules 40(4):1043–1048CrossRef Sirota EB (2007) Polymer crystallization: metastable mesophases and morphology. Macromolecules 40(4):1043–1048CrossRef
15.
Zurück zum Zitat Fernández-Blázquez JP et al. (2007) The two crystallization modes of mesophase forming polymers. Macromolecules 40(6):1775–1778CrossRef Fernández-Blázquez JP et al. (2007) The two crystallization modes of mesophase forming polymers. Macromolecules 40(6):1775–1778CrossRef
16.
Zurück zum Zitat Zhao J et al. (2011) Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique. J Phys Chem B 116(1):147–153CrossRef Zhao J et al. (2011) Phase transitions in prequenched mesomorphic isotactic polypropylene during heating and annealing processes as revealed by simultaneous synchrotron SAXS and WAXD technique. J Phys Chem B 116(1):147–153CrossRef
17.
Zurück zum Zitat Lu Y et al. (2014) Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state Due to stress-induced localized melting and recrystallization. J Phys Chem B 118(45):13019–13023CrossRef Lu Y et al. (2014) Crystallization, recrystallization, and melting lines in syndiotactic polypropylene crystallized from quiescent melt and semicrystalline state Due to stress-induced localized melting and recrystallization. J Phys Chem B 118(45):13019–13023CrossRef
18.
Zurück zum Zitat Wang Y et al. (2014) Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1. Macromolecules 47(18):6401–6407CrossRef Wang Y et al. (2014) Molecular weight dependency of crystallization line, recrystallization line, and melting line of polybutene-1. Macromolecules 47(18):6401–6407CrossRef
19.
Zurück zum Zitat Strobl G, Cho TY (2007) Growth kinetics of polymer crystals in bulk. Eur Phys J E Soft Matter 23(1):55–65CrossRef Strobl G, Cho TY (2007) Growth kinetics of polymer crystals in bulk. Eur Phys J E Soft Matter 23(1):55–65CrossRef
20.
Zurück zum Zitat Avalos F, Lopez-Manchado MA, Arroyo M (1996) Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene. Polymer 37(25):5681–5688CrossRef Avalos F, Lopez-Manchado MA, Arroyo M (1996) Crystallization kinetics of polypropylene: 1. Effect of small additions of low-density polyethylene. Polymer 37(25):5681–5688CrossRef
21.
Zurück zum Zitat Maiti P et al. (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6):2042–2049CrossRef Maiti P et al. (2002) Influence of crystallization on intercalation, morphology, and mechanical properties of polypropylene/clay nanocomposites. Macromolecules 35(6):2042–2049CrossRef
22.
Zurück zum Zitat Xu J-Z et al. (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 43(11):5000–5008CrossRef Xu J-Z et al. (2010) Isothermal crystallization of poly(l-lactide) induced by graphene nanosheets and carbon nanotubes: A comparative study. Macromolecules 43(11):5000–5008CrossRef
23.
Zurück zum Zitat Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897CrossRef Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci B Polym Phys 47(9):888–897CrossRef
24.
Zurück zum Zitat El Achaby M et al. (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef El Achaby M et al. (2012) Piezoelectric β-polymorph formation and properties enhancement in graphene oxide – PVDF nanocomposite films. Appl Surf Sci 258(19):7668–7677CrossRef
25.
Zurück zum Zitat Zhang YY et al. (2012) Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 125(S1):E314–E319CrossRef Zhang YY et al. (2012) Crystallization behavior and phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidene fluoride) nanocomposites. J Appl Polym Sci 125(S1):E314–E319CrossRef
26.
Zurück zum Zitat Han P et al. (2013) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride). J Compos Mater 48(6):659–666CrossRef Han P et al. (2013) Effects of reduced graphene on crystallization behavior, thermal conductivity and tribological properties of poly(vinylidene fluoride). J Compos Mater 48(6):659–666CrossRef
27.
Zurück zum Zitat Li J et al. (2015) Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polym Chem 6(21):3988–4002CrossRef Li J et al. (2015) Crystalline structures and crystallization behaviors of poly(l-lactide) in poly(l-lactide)/graphene nanosheet composites. Polym Chem 6(21):3988–4002CrossRef
28.
Zurück zum Zitat Lovinger A (1982) Poly(Vinylidene Fluoride). In: Bassett DC (ed) Developments in Crystalline Polymers—1. Springer, Netherlands, pp. 195–273CrossRef Lovinger A (1982) Poly(Vinylidene Fluoride). In: Bassett DC (ed) Developments in Crystalline Polymers—1. Springer, Netherlands, pp. 195–273CrossRef
29.
Zurück zum Zitat Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706CrossRef
30.
Zurück zum Zitat Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100(4):3272–3279CrossRef Gregorio R (2006) Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J Appl Polym Sci 100(4):3272–3279CrossRef
31.
Zurück zum Zitat Gregorio R, CapitãO RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35(2):299–306CrossRef Gregorio R, CapitãO RC (2000) Morphology and phase transition of high melt temperature crystallized poly(vinylidene fluoride). J Mater Sci 35(2):299–306CrossRef
32.
Zurück zum Zitat Gomes J et al. (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):065010CrossRef Gomes J et al. (2010) Influence of the β-phase content and degree of crystallinity on the piezo- and ferroelectric properties of poly(vinylidene fluoride). Smart Mater Struct 19(6):065010CrossRef
33.
Zurück zum Zitat Weinhold S, Litt MH, Lando JB (1980) The crystal structure of the γ phase of poly(vinylidene fluoride). Macromolecules 13(5):1178–1183CrossRef Weinhold S, Litt MH, Lando JB (1980) The crystal structure of the γ phase of poly(vinylidene fluoride). Macromolecules 13(5):1178–1183CrossRef
34.
Zurück zum Zitat Yu S et al. (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef Yu S et al. (2009) Formation mechanism of β-phase in PVDF/CNT composite prepared by the sonication method. Macromolecules 42(22):8870–8874CrossRef
35.
Zurück zum Zitat Ke K et al. (2011) Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci 46(5):1542–1550CrossRef Ke K et al. (2011) Crystallization behavior of poly (vinylidene fluoride)/multi-walled carbon nanotubes nanocomposites. J Mater Sci 46(5):1542–1550CrossRef
36.
Zurück zum Zitat He L et al. (2010) Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polym Compos 31(5):921–927 He L et al. (2010) Effect of multi-walled carbon nanotubes on crystallization, thermal, and mechanical properties of poly(vinylidene fluoride). Polym Compos 31(5):921–927
37.
Zurück zum Zitat Yang J et al. (2011) Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 52(21):4970–4978CrossRef Yang J et al. (2011) Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 52(21):4970–4978CrossRef
38.
Zurück zum Zitat Buckley J et al. (2006) Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47(7):2411–2422CrossRef Buckley J et al. (2006) Nanocomposites of poly(vinylidene fluoride) with organically modified silicate. Polymer 47(7):2411–2422CrossRef
39.
Zurück zum Zitat Song R, Yang D, He L (2007) Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly(vinylidene fluoride). J Mater Sci 42(20):8408–8417CrossRef Song R, Yang D, He L (2007) Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly(vinylidene fluoride). J Mater Sci 42(20):8408–8417CrossRef
40.
Zurück zum Zitat Silva MP et al. (2010) α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater Chem Phys 122(1):87–92CrossRef Silva MP et al. (2010) α- and γ-PVDF: crystallization kinetics, microstructural variations and thermal behaviour. Mater Chem Phys 122(1):87–92CrossRef
41.
Zurück zum Zitat Morra BS, Stein RS (1982) Melting studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci Polym Phys Ed 20(12):2243–2259CrossRef Morra BS, Stein RS (1982) Melting studies of poly(vinylidene fluoride) and its blends with poly(methyl methacrylate). J Polym Sci Polym Phys Ed 20(12):2243–2259CrossRef
42.
Zurück zum Zitat Sajkiewicz P (1999) Crystallization behaviour of poly(vinylidene fluoride). Eur Polym J 35(9):1581–1590CrossRef Sajkiewicz P (1999) Crystallization behaviour of poly(vinylidene fluoride). Eur Polym J 35(9):1581–1590CrossRef
43.
Zurück zum Zitat Prest WM, Luca DJ (1975) The morphology and thermal response of high-temperature–crystallized poly(vinylidene fluoride). J Appl Phys 46(10):4136–4143CrossRef Prest WM, Luca DJ (1975) The morphology and thermal response of high-temperature–crystallized poly(vinylidene fluoride). J Appl Phys 46(10):4136–4143CrossRef
44.
Zurück zum Zitat Prest WM, Luca DJ (1978) The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J Appl Phys 49(10):5042–5047CrossRef Prest WM, Luca DJ (1978) The formation of the γ phase from the α and β polymorphs of polyvinylidene fluoride. J Appl Phys 49(10):5042–5047CrossRef
45.
Zurück zum Zitat Sencadas V et al. (2010) Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the avrami equation. J Mater Sci 45(5):1328–1335CrossRef Sencadas V et al. (2010) Isothermal crystallization kinetics of poly(vinylidene fluoride) in the α-phase in the scope of the avrami equation. J Mater Sci 45(5):1328–1335CrossRef
46.
Zurück zum Zitat Strobl G (2007) The Semicrystalline State, in The Physics of Polymers. Springer, Berlin Heidelberg, pp. 165–222 Strobl G (2007) The Semicrystalline State, in The Physics of Polymers. Springer, Berlin Heidelberg, pp. 165–222
47.
Zurück zum Zitat Li Y et al. (2012) Role of Ion–dipole interactions in nucleation of gamma poly(vinylidene fluoride) in the presence of graphene oxide during melt crystallization. J Phys Chem B 116(51):14951–14960CrossRef Li Y et al. (2012) Role of Ion–dipole interactions in nucleation of gamma poly(vinylidene fluoride) in the presence of graphene oxide during melt crystallization. J Phys Chem B 116(51):14951–14960CrossRef
48.
Zurück zum Zitat Xu J-Z et al. (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44(8):2808–2818CrossRef Xu J-Z et al. (2011) Graphene nanosheets and shear flow induced crystallization in isotactic polypropylene nanocomposites. Macromolecules 44(8):2808–2818CrossRef
Metadaten
Titel
Double equilibrium melting temperatures and zero growth temperature of PVDF in PVDF/graphene composites
verfasst von
Benping Wang
Xianjing Gong
Jingqing Li
Yingrui Shang
Dean Shi
Jesper de Claville Christiansen
Donghong Yu
Shichun Jiang
Publikationsdatum
01.12.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0889-x

Weitere Artikel der Ausgabe 12/2015

Journal of Polymer Research 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.