Skip to main content

24.06.2024 | Original Paper

Doubly even self-orthogonal codes from quasi-symmetric designs

verfasst von: Dean Crnković, Doris Dumičić Danilović, Ana Šumberac, Andrea Švob

Erschienen in: Applicable Algebra in Engineering, Communication and Computing

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we give a construction of doubly even self-orthogonal codes from quasi-symmetric designs. Especially, we study orbit matrices of quasi-symmetric designs and give a construction of doubly even self-orthogonal codes from orbit matrices of quasi-symmetric designs of Blokhuis–Haemers type.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Behbahani, M., Lam, C.: Strongly regular graphs with non-trivial automorphisms. Discret. Math. 311, 132–144 (2011)MathSciNetCrossRef Behbahani, M., Lam, C.: Strongly regular graphs with non-trivial automorphisms. Discret. Math. 311, 132–144 (2011)MathSciNetCrossRef
2.
Zurück zum Zitat Betsumiya, K., Harada, M., Munemasa, A.: A complete classification of doubly even self-dual codes of length 40. Electron. J. Combin. 19(3), 12 (2012)MathSciNetCrossRef Betsumiya, K., Harada, M., Munemasa, A.: A complete classification of doubly even self-dual codes of length 40. Electron. J. Combin. 19(3), 12 (2012)MathSciNetCrossRef
3.
Zurück zum Zitat Blokhuis, A., Haemers, W.H.: An infinite family of quasi-symmetric designs. J. Stat. Plan. Inference 95, 117–119 (2001)MathSciNetCrossRef Blokhuis, A., Haemers, W.H.: An infinite family of quasi-symmetric designs. J. Stat. Plan. Inference 95, 117–119 (2001)MathSciNetCrossRef
4.
Zurück zum Zitat Bosma, W., Cannon, J.: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Sydney (1994) Bosma, W., Cannon, J.: Handbook of Magma Functions. Department of Mathematics, University of Sydney, Sydney (1994)
5.
6.
Zurück zum Zitat Conway, J.H., Pless, V., Sloane, N.J.A.: The binary self-dual codes of length up to 32: a revised enumeration. J. Combin. Theory Ser. A 60, 183–195 (1992)MathSciNetCrossRef Conway, J.H., Pless, V., Sloane, N.J.A.: The binary self-dual codes of length up to 32: a revised enumeration. J. Combin. Theory Ser. A 60, 183–195 (1992)MathSciNetCrossRef
7.
Zurück zum Zitat Crnković, D., Pavčević, M.-O.: Some new symmetric designs with parameters (64,28,12). Discret. Math. 237, 109–118 (2001)MathSciNetCrossRef Crnković, D., Pavčević, M.-O.: Some new symmetric designs with parameters (64,28,12). Discret. Math. 237, 109–118 (2001)MathSciNetCrossRef
10.
Zurück zum Zitat Crnković, D., Maksimović, M.: Construction of strongly regular graphs having an automorphism group of composite order. Contrib. Discret. Math. 15, 22–41 (2020)MathSciNet Crnković, D., Maksimović, M.: Construction of strongly regular graphs having an automorphism group of composite order. Contrib. Discret. Math. 15, 22–41 (2020)MathSciNet
11.
Zurück zum Zitat Crnković, D., Maksimović, M., Rodrigues, B.G., Rukavina, S.: Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Adv. Math. Commun. 10, 555–582 (2016)MathSciNetCrossRef Crnković, D., Maksimović, M., Rodrigues, B.G., Rukavina, S.: Self-orthogonal codes from the strongly regular graphs on up to 40 vertices. Adv. Math. Commun. 10, 555–582 (2016)MathSciNetCrossRef
12.
Zurück zum Zitat Crnković, D., Rodrigues, B.G., Rukavina, S., Simčić, L.: Self-orthogonal codes from orbit matrices of 2-designs. Adv. Math. Commun. 7, 161–174 (2013)MathSciNetCrossRef Crnković, D., Rodrigues, B.G., Rukavina, S., Simčić, L.: Self-orthogonal codes from orbit matrices of 2-designs. Adv. Math. Commun. 7, 161–174 (2013)MathSciNetCrossRef
13.
Zurück zum Zitat Crnković, D., Rodrigues, B.G., Rukavina, S., Tonchev, V.D.: Quasi-symmetric 2-(64,24,46) designs derived from AG(3,4). Discret. Math. 340, 2472–2478 (2017)MathSciNetCrossRef Crnković, D., Rodrigues, B.G., Rukavina, S., Tonchev, V.D.: Quasi-symmetric 2-(64,24,46) designs derived from AG(3,4). Discret. Math. 340, 2472–2478 (2017)MathSciNetCrossRef
14.
Zurück zum Zitat Ding, Y.S., Houghten, S., Lam, C., Smith, S., Thiel, L., Tonchev, V.: Quasi-symmetric 2-(28,12,11) designs with an automorphism of order 7. J. Combin. Des. 6, 213–223 (1998)MathSciNetCrossRef Ding, Y.S., Houghten, S., Lam, C., Smith, S., Thiel, L., Tonchev, V.: Quasi-symmetric 2-(28,12,11) designs with an automorphism of order 7. J. Combin. Des. 6, 213–223 (1998)MathSciNetCrossRef
16.
Zurück zum Zitat Harada, M., Saito, K.: Singly even self-dual codes constructed from Hadamard matrices of order 28. Australas. J. Combin. 70, 288–296 (2018)MathSciNet Harada, M., Saito, K.: Singly even self-dual codes constructed from Hadamard matrices of order 28. Australas. J. Combin. 70, 288–296 (2018)MathSciNet
17.
Zurück zum Zitat Harada, M., Tonchev, V.D.: Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms. Discret. Math. 264, 81–90 (2003)MathSciNetCrossRef Harada, M., Tonchev, V.D.: Self-orthogonal codes from symmetric designs with fixed-point-free automorphisms. Discret. Math. 264, 81–90 (2003)MathSciNetCrossRef
18.
Zurück zum Zitat Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRef Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003)CrossRef
19.
Zurück zum Zitat Janko, Z.: Coset enumeration in groups and construction of symmetric designs. Ann. Discret. Math. 52(1992), 275–277 (1990)MathSciNet Janko, Z.: Coset enumeration in groups and construction of symmetric designs. Ann. Discret. Math. 52(1992), 275–277 (1990)MathSciNet
20.
Zurück zum Zitat Janko, Z., Tonchev, V.D.: Cyclic 2-(91,6,1) designs with multiplier automorphisms. Discret. Math. 97, 265–268 (1991)MathSciNetCrossRef Janko, Z., Tonchev, V.D.: Cyclic 2-(91,6,1) designs with multiplier automorphisms. Discret. Math. 97, 265–268 (1991)MathSciNetCrossRef
21.
Zurück zum Zitat Janko, Z., van Trung, T.: Construction of a new symmetric block design for (78,22,6) with the help of tactical decompositions. J. Combin. Theory Ser. A 40, 451–455 (1985)MathSciNetCrossRef Janko, Z., van Trung, T.: Construction of a new symmetric block design for (78,22,6) with the help of tactical decompositions. J. Combin. Theory Ser. A 40, 451–455 (1985)MathSciNetCrossRef
22.
Zurück zum Zitat Jungnickel, D., Pott, A., Smith, K.W.: Difference sets. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 419–435. Chapman & Hall/CRC Press, Boca Raton (2007) Jungnickel, D., Pott, A., Smith, K.W.: Difference sets. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 419–435. Chapman & Hall/CRC Press, Boca Raton (2007)
23.
Zurück zum Zitat Jungnickel, D., Tonchev, V.D.: Maximal arcs and quasi-symmetric designs. Des. Codes Cryptogr. 77, 365–374 (2015)MathSciNetCrossRef Jungnickel, D., Tonchev, V.D.: Maximal arcs and quasi-symmetric designs. Des. Codes Cryptogr. 77, 365–374 (2015)MathSciNetCrossRef
24.
Zurück zum Zitat Kohnert, A., Wassermann, A.: Construction of binary and ternary self-orthogonal linear codes. Discret. Appl. Math. 157, 2118–2123 (2009)MathSciNetCrossRef Kohnert, A., Wassermann, A.: Construction of binary and ternary self-orthogonal linear codes. Discret. Appl. Math. 157, 2118–2123 (2009)MathSciNetCrossRef
25.
Zurück zum Zitat Krčadinac, V., Vlahović Kruc, R.: Quasi-symmetric designs on 56 points. Adv. Math. Commun. 15, 633–646 (2021)MathSciNetCrossRef Krčadinac, V., Vlahović Kruc, R.: Quasi-symmetric designs on 56 points. Adv. Math. Commun. 15, 633–646 (2021)MathSciNetCrossRef
27.
Zurück zum Zitat Miezaki, T.: Design-theoretic analogies between codes, lattices, and vertex operator algebras. Des. Codes Cryptogr. 89, 763–780 (2021)MathSciNetCrossRef Miezaki, T.: Design-theoretic analogies between codes, lattices, and vertex operator algebras. Des. Codes Cryptogr. 89, 763–780 (2021)MathSciNetCrossRef
28.
Zurück zum Zitat Nebe, G., Rains, E.M., Sloane, N.J.A.: Self-Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17. Springer, Cham (2006) Nebe, G., Rains, E.M., Sloane, N.J.A.: Self-Dual Codes and Invariant Theory, Algorithms and Computation in Mathematics, vol. 17. Springer, Cham (2006)
29.
31.
Zurück zum Zitat Shrikhande, M.S.: Quasi-symmetric designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 578–582. Chapman & Hall/CRC Press, Boca Raton (2007) Shrikhande, M.S.: Quasi-symmetric designs. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 578–582. Chapman & Hall/CRC Press, Boca Raton (2007)
32.
Zurück zum Zitat Shrikhande, M.S., Sane, S.S.: Quasi-symmetric designs. Cambridge University Press, Cambridge (1991)CrossRef Shrikhande, M.S., Sane, S.S.: Quasi-symmetric designs. Cambridge University Press, Cambridge (1991)CrossRef
33.
Zurück zum Zitat Shrikhande, S.S., Raghavarao, D.: A method of construction of incomplete block designs. Sankhyā Ser. A 25, 399–402 (1963)MathSciNet Shrikhande, S.S., Raghavarao, D.: A method of construction of incomplete block designs. Sankhyā Ser. A 25, 399–402 (1963)MathSciNet
34.
Zurück zum Zitat Tonchev, V.D.: Codes. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 667–702. Chapman & Hall/CRC Press, Boca Raton (2007) Tonchev, V.D.: Codes. In: Colbourn, C.J., Dinitz, J.H. (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 667–702. Chapman & Hall/CRC Press, Boca Raton (2007)
35.
Zurück zum Zitat Tonchev, V.D.: The uniformly packed binary [27,21,3] and [35,29,3] codes. Discret. Math. 149, 283–288 (1996)MathSciNetCrossRef Tonchev, V.D.: The uniformly packed binary [27,21,3] and [35,29,3] codes. Discret. Math. 149, 283–288 (1996)MathSciNetCrossRef
Metadaten
Titel
Doubly even self-orthogonal codes from quasi-symmetric designs
verfasst von
Dean Crnković
Doris Dumičić Danilović
Ana Šumberac
Andrea Švob
Publikationsdatum
24.06.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Applicable Algebra in Engineering, Communication and Computing
Print ISSN: 0938-1279
Elektronische ISSN: 1432-0622
DOI
https://doi.org/10.1007/s00200-024-00664-4