Skip to main content

25.02.2025 | Connected Automated Vehicles and ITS, Vision and Sensors

DQN-Based Automatic Emergency Collision Avoidance Control Considering Driver Style

verfasst von: Xiaohui Lu, Pengfei Zhang, Xinyi Zheng, Ruixia Xiong, Niaona Zhang, Shaosong Li

Erschienen in: International Journal of Automotive Technology

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a deep Q-network (DQN) longitudinal collision avoidance control method is proposed to achieve excellent safety, while improve the driving experience by considering driver style. In terms of network structure, the driver style information is concatenated with image and motion information between convolutional and fully connected neural networks, achieving the fusion of information from different dimensions. In addition, the ideal safe distance is designed into the reward function to achieve end-to-end longitudinal collision avoidance control considering driver style. A simulation experimental environment is established based on Carla to test the control effects. The simulation results show that the control strategy of proposed method has a considerable effect on handling longitudinal collision avoidance problems. The longitudinal collision avoidance control of the vehicle exhibits distinct variations under different driver styles, and the longitudinal collision avoidance process can meet the psychological expectation of drivers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Weitere Produktempfehlungen anzeigen
Literatur
Zurück zum Zitat Alvarez, L., Yi , J., Horowitz, R. Olmos, L. (2000). Emergency braking control in automated highway systems with underestimation of friction coefficient. In: Proceedings of the 2000 American Control Conference. (ACC) 1, 6, 574–579. Alvarez, L., Yi , J., Horowitz, R. Olmos, L. (2000). Emergency braking control in automated highway systems with underestimation of friction coefficient. In: Proceedings of the 2000 American Control Conference. (ACC) 1, 6, 574–579.
Zurück zum Zitat Chen, J., Li, S. E., & Tomizuka, M. (2021). Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5068–5078.CrossRefMATH Chen, J., Li, S. E., & Tomizuka, M. (2021). Interpretable end-to-end urban autonomous driving with latent deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 23(6), 5068–5078.CrossRefMATH
Zurück zum Zitat Desjardins, C., & Chaib-Draa, B. (2011). Cooperative adaptive cruise control: A reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1248–1260.CrossRefMATH Desjardins, C., & Chaib-Draa, B. (2011). Cooperative adaptive cruise control: A reinforcement learning approach. IEEE Transactions on Intelligent Transportation Systems, 12(4), 1248–1260.CrossRefMATH
Zurück zum Zitat Fu, Y., Li, C., Yu, F. R., Luan, T. H., & Zhang, Y. (2020). A decision-making strategy for vehicle autonomous braking in emergency via deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(6), 5876–5888.CrossRefMATH Fu, Y., Li, C., Yu, F. R., Luan, T. H., & Zhang, Y. (2020). A decision-making strategy for vehicle autonomous braking in emergency via deep reinforcement learning. IEEE Transactions on Vehicular Technology, 69(6), 5876–5888.CrossRefMATH
Zurück zum Zitat Guo, H. J., Li, C. W., Luo, G. Y., Chen, T., & Li, K. (2021). Driver Car-following model based on deep reinforcement learning. Automotive Engineering, 43, 571–579.MATH Guo, H. J., Li, C. W., Luo, G. Y., Chen, T., & Li, K. (2021). Driver Car-following model based on deep reinforcement learning. Automotive Engineering, 43, 571–579.MATH
Zurück zum Zitat Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T., Wang, W., Lu, L., Jia, X., Liu, Q., Dai, J., Qiao, Y., Li, H. (2023). Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17853–17862. Hu, Y., Yang, J., Chen, L., Li, K., Sima, C., Zhu, X., Chai, S., Du, S., Lin, T., Wang, W., Lu, L., Jia, X., Liu, Q., Dai, J., Qiao, Y., Li, H. (2023). Planning-oriented autonomous driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 17853–17862.
Zurück zum Zitat Ji, J., Khajepour, A., Melek, W. W., & Huang, Y. (2016). Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 66(2), 952–964.CrossRefMATH Ji, J., Khajepour, A., Melek, W. W., & Huang, Y. (2016). Path planning and tracking for vehicle collision avoidance based on model predictive control with multiconstraints. IEEE Transactions on Vehicular Technology, 66(2), 952–964.CrossRefMATH
Zurück zum Zitat Kim, M., Lee, S., Lim, J., Choi, J., & Kang, S. G. (2020). Unexpected collision avoidance driving strategy using deep reinforcement learning. IEEE Access, 8, 17243–17252.CrossRef Kim, M., Lee, S., Lim, J., Choi, J., & Kang, S. G. (2020). Unexpected collision avoidance driving strategy using deep reinforcement learning. IEEE Access, 8, 17243–17252.CrossRef
Zurück zum Zitat Koutník, J., Schmidhuber, J., Gomez, F. (2014). Evolving deep unsupervised convolutional networks for vision-based reinforcement learning. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, 541–548. Koutník, J., Schmidhuber, J., Gomez, F. (2014). Evolving deep unsupervised convolutional networks for vision-based reinforcement learning. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation, 541–548.
Zurück zum Zitat Li, J., Yao, L., Xu, X., Cheng, B., & Ren, J. (2020). Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving. Information Sciences, 532, 110–124.CrossRefMATH Li, J., Yao, L., Xu, X., Cheng, B., & Ren, J. (2020). Deep reinforcement learning for pedestrian collision avoidance and human-machine cooperative driving. Information Sciences, 532, 110–124.CrossRefMATH
Zurück zum Zitat Li, W. L., Zhang, X. S., Han, D., Qian, H., & Shi, X. H. (2021). Vehicle autonomous collision avoidance decision control model based on deep reinforcement learning. Journal of Automotive Safety and Energy, 12(2), 201.MATH Li, W. L., Zhang, X. S., Han, D., Qian, H., & Shi, X. H. (2021). Vehicle autonomous collision avoidance decision control model based on deep reinforcement learning. Journal of Automotive Safety and Energy, 12(2), 201.MATH
Zurück zum Zitat Liu, Z., Cao, S. P., Shen, Y., & Yang, X. (2020). Signal control of single intersection based on improved deep reinforcement learning method. Comput Sci (in Chinese), 47(12), 226–232.MATH Liu, Z., Cao, S. P., Shen, Y., & Yang, X. (2020). Signal control of single intersection based on improved deep reinforcement learning method. Comput Sci (in Chinese), 47(12), 226–232.MATH
Zurück zum Zitat Liu, Y. C., Liu, H. Y., Luo, X., et al. (2022). Trajectory optimization of connected vehicles at isolated intersection in mixed traffic environment. Journal of Transportation Systems Engineering and Information Technology, 22(2), 154.MATH Liu, Y. C., Liu, H. Y., Luo, X., et al. (2022). Trajectory optimization of connected vehicles at isolated intersection in mixed traffic environment. Journal of Transportation Systems Engineering and Information Technology, 22(2), 154.MATH
Zurück zum Zitat Ma, Z., & Zhang, Y. (2021). Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver’s driving styles. Analysis and Prevention, 159(4), 106238.CrossRefMATH Ma, Z., & Zhang, Y. (2021). Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver’s driving styles. Analysis and Prevention, 159(4), 106238.CrossRefMATH
Zurück zum Zitat Martin, R., Kusev, I., Cooke, A. J., Baranova, V., Van Schaik, P., & Kusev, P. (2017). Commentary: The social dilemma of autonomous vehicles. Frontiers in Psychology, 8, 808.CrossRef Martin, R., Kusev, I., Cooke, A. J., Baranova, V., Van Schaik, P., & Kusev, P. (2017). Commentary: The social dilemma of autonomous vehicles. Frontiers in Psychology, 8, 808.CrossRef
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef
Zurück zum Zitat Murphey, Y. L., Milton, R. and Kiliaris, L. (2009). Driver’s style classification using jerk analysis. In: 2009 IEEE workshop on computational intelligence in vehicles and vehicular systems. IEEE 23–28. Murphey, Y. L., Milton, R. and Kiliaris, L. (2009). Driver’s style classification using jerk analysis. In: 2009 IEEE workshop on computational intelligence in vehicles and vehicular systems. IEEE 23–28.
Zurück zum Zitat Nasr, V., Wozniak, D., Shahini, F., & Zahabi, M. (2021). Application of advanced driver-assistance systems in police vehicles. Transportation Research Record, 2675(10), 1453–1468.CrossRefMATH Nasr, V., Wozniak, D., Shahini, F., & Zahabi, M. (2021). Application of advanced driver-assistance systems in police vehicles. Transportation Research Record, 2675(10), 1453–1468.CrossRefMATH
Zurück zum Zitat Park, J., Kim, D., & Huh, K. (2021). Emergency collision avoidance by steering in critical situations. International Journal of Automotive Technology, 22, 173–184.CrossRefMATH Park, J., Kim, D., & Huh, K. (2021). Emergency collision avoidance by steering in critical situations. International Journal of Automotive Technology, 22, 173–184.CrossRefMATH
Zurück zum Zitat Park, J. M., Kim, D. W., Yoon, Y. S., Kim, H. J., & Yi, K. S. (2009). Obstacle avoidance of autonomous vehicles based on model predictive control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(12), 1499–1516.MATH Park, J. M., Kim, D. W., Yoon, Y. S., Kim, H. J., & Yi, K. S. (2009). Obstacle avoidance of autonomous vehicles based on model predictive control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223(12), 1499–1516.MATH
Zurück zum Zitat Peiris, S., Newstead, S., Berecki-Gisolf, J., Chen, B., & Fildes, B. (2022). Quantifying the lost safety benefits of ADAS technologies due to inadequate supporting road infrastructure. Sustainability, 14(4), 2234.CrossRef Peiris, S., Newstead, S., Berecki-Gisolf, J., Chen, B., & Fildes, B. (2022). Quantifying the lost safety benefits of ADAS technologies due to inadequate supporting road infrastructure. Sustainability, 14(4), 2234.CrossRef
Zurück zum Zitat Qin, C., Wang, Y., Zhang, Y., & Yin, C. (2023). Bird’s-eye view semantic segmentation and voxel semantic segmentation based on frustum voxel modeling and monocular camera. Journal of Shanghai Jiaotong University (Science), 28(1), 100–113.CrossRefMATH Qin, C., Wang, Y., Zhang, Y., & Yin, C. (2023). Bird’s-eye view semantic segmentation and voxel semantic segmentation based on frustum voxel modeling and monocular camera. Journal of Shanghai Jiaotong University (Science), 28(1), 100–113.CrossRefMATH
Zurück zum Zitat Sagberg, F., Selpi, Piccinini, G. F. B., & Engström, J. (2015). A review of research on driving styles and road safety. The Journal of the Human Factors Society, 57(7), 1248–1275.CrossRefMATH Sagberg, F., Selpi, Piccinini, G. F. B., & Engström, J. (2015). A review of research on driving styles and road safety. The Journal of the Human Factors Society, 57(7), 1248–1275.CrossRefMATH
Zurück zum Zitat Zhang, L., Wang, J., & Li, K. (2006). A study on collision warning/ avoidance algorithms based on driver’s behaviors during car-following. Automotive Engineering, 28(4), 351–375.MATH Zhang, L., Wang, J., & Li, K. (2006). A study on collision warning/ avoidance algorithms based on driver’s behaviors during car-following. Automotive Engineering, 28(4), 351–375.MATH
Zurück zum Zitat Zhang, Y. Z., Wang, Y. C., Zhao, W., & Feng, J. (2022). Longitudinal and lateral collision avoidance control strategy for intelligent vehicles. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 236(2), 268–286.CrossRefMATH Zhang, Y. Z., Wang, Y. C., Zhao, W., & Feng, J. (2022). Longitudinal and lateral collision avoidance control strategy for intelligent vehicles. Proceedings of the Institution of Mechanical Engineers Part D Journal of Automobile Engineering, 236(2), 268–286.CrossRefMATH
Zurück zum Zitat Zhao, J., Shi, J., & Zhuo, L. (2024). BEV perception for autonomous driving: State of the art and future perspectives. Expert Systems with Applications, 258, 125103.CrossRefMATH Zhao, J., Shi, J., & Zhuo, L. (2024). BEV perception for autonomous driving: State of the art and future perspectives. Expert Systems with Applications, 258, 125103.CrossRefMATH
Zurück zum Zitat Zheng, G., Zu, Z., & Kong, Z. (2021). The collision avoidance strategy of automatic emergency braking system considering the response time of the driver. Journal of Chongqing University of Technology (Natural Science), 34(12), 45–52.MATH Zheng, G., Zu, Z., & Kong, Z. (2021). The collision avoidance strategy of automatic emergency braking system considering the response time of the driver. Journal of Chongqing University of Technology (Natural Science), 34(12), 45–52.MATH
Metadaten
Titel
DQN-Based Automatic Emergency Collision Avoidance Control Considering Driver Style
verfasst von
Xiaohui Lu
Pengfei Zhang
Xinyi Zheng
Ruixia Xiong
Niaona Zhang
Shaosong Li
Publikationsdatum
25.02.2025
Verlag
The Korean Society of Automotive Engineers
Erschienen in
International Journal of Automotive Technology
Print ISSN: 1229-9138
Elektronische ISSN: 1976-3832
DOI
https://doi.org/10.1007/s12239-025-00224-w