Skip to main content

2012 | OriginalPaper | Buchkapitel

Drag Effectiveness of Supercavitating Underwater Hulls

verfasst von : Igor Nesteruk

Erschienen in: Supercavitation

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The important problem of the drag reduction of underwater hulls was investigated analytically and numerically. The axisymmetric flows of the ideal and the viscous fluid were used. Different effectiveness criteria, such as: the volumetric drag coefficient, the drag coefficients, based on the maximum body cross-section area and the squared hull length, and the ranges of the inertial motion were applied.
The use of known analytic dependences for the slender axisymmetric cavity shapes after the slender or the non-slender cavitators, it was shown that the value of the volumetric drag coefficient and the similar coefficients, based on the squared values of the length and the caliber, can sufficiently be reduced at small cavitation numbers. The smallest values of these drag coefficients correspond to the largest aspect ratios and the slender cavitators. Comparison of the drags of the supercavitating and unseparated flow patterns showed the existence of the critical values of the volume and dimensions. The supercavitating flow pattern is preferable for the values of these parameters smaller than critical ones. The need of the buoyancy force compensation sufficiently diminishes the critical values of the vehicle volume or its dimensions, which achieve maximum at a certain value of the motion velocity. In the case of the base cavity existence, the estimations of the supercavitating hull pressure drag and the comparison with the unseparated flow pattern are presented. The critical values of the body volume have a maximum at a certain value of the movement velocity and drastically increase with the aspect ratio increasing.
Maximum range problems are considered for the supercavitating motion of the axisymmetric body on inertia under an arbitrary angle to horizon. Different isoperimetric problems were formulated and solved with the fixed values of the body mass, kinetic energy, aspect ratio and caliber. Analytic and numeric solutions for the maximal range and the optimal body shapes are obtained. It was shown that infinite small exceeding some critical value of the initial depth can cause a jump of the range and coming to the water surface. The corresponding values of the critical initial depth are calculated.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Logvinovich GV. Hydrodynamics of Flows with Free Boundaries. Kiev: Naukova Dumka; 1969. (In Russian). English translation: Halsted; 1973. Logvinovich GV. Hydrodynamics of Flows with Free Boundaries. Kiev: Naukova Dumka; 1969. (In Russian). English translation: Halsted; 1973.
2.
Zurück zum Zitat Buyvol VN. Slender cavities in flows with perturbations. Кiev: Naukova Dumka; 1980 (In Russian). Buyvol VN. Slender cavities in flows with perturbations. Кiev: Naukova Dumka; 1980 (In Russian).
3.
Zurück zum Zitat Logvinovich GV, Buyvol VN, Dudko AS, et al. Free boundary flows. Кiev: Naukova Dumka; 1985 (In Russian). Logvinovich GV, Buyvol VN, Dudko AS, et al. Free boundary flows. Кiev: Naukova Dumka; 1985 (In Russian).
4.
Zurück zum Zitat Savchenko YuN. Supercavitating object propulsion. RTO-AVT/VKI Special Course on Supercavitating Flows; February 12–16, 2001. VKI, Brussels; 2001. (Belgium). Savchenko YuN. Supercavitating object propulsion. RTO-AVT/VKI Special Course on Supercavitating Flows; February 12–16, 2001. VKI, Brussels; 2001. (Belgium).
5.
Zurück zum Zitat Savchenko YuN. On motion in water in supercavitation flow regimes. Gidromehanika. 1996;70:105–15 (In Russian). Savchenko YuN. On motion in water in supercavitation flow regimes. Gidromehanika. 1996;70:105–15 (In Russian).
6.
Zurück zum Zitat Savchenko YuN, Vlasenko YuD, Semenenko VN. Experimental study of high-speed cavitated flows. Int J Fluid Mech Res. 1999;26(3):365–74. Savchenko YuN, Vlasenko YuD, Semenenko VN. Experimental study of high-speed cavitated flows. Int J Fluid Mech Res. 1999;26(3):365–74.
7.
Zurück zum Zitat Savchenko YuN, Semenenko VN, Putilin SI. Unsteady supercavitated motion of bodies. Int J Fluid Mech Res. 2000;27(1):109–37. Savchenko YuN, Semenenko VN, Putilin SI. Unsteady supercavitated motion of bodies. Int J Fluid Mech Res. 2000;27(1):109–37.
8.
Zurück zum Zitat Savchenko YuN. Perspectives of the supercavitation flow applications. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008), 2–4 July 2008. St. Petersburg; 2008. ISBN 5-88303-393-8. Savchenko YuN. Perspectives of the supercavitation flow applications. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008), 2–4 July 2008. St. Petersburg; 2008. ISBN 5-88303-393-8.
9.
Zurück zum Zitat Savchenko YuN, Semenenko VN, Putilin SI, et al. Designing the high-speed supercavitating vehicles. International Conference on Fast Sea Transportation (FAST’2005), June 2005. St. Peterburg; 2005. Savchenko YuN, Semenenko VN, Putilin SI, et al. Designing the high-speed supercavitating vehicles. International Conference on Fast Sea Transportation (FAST’2005), June 2005. St. Peterburg; 2005.
10.
Zurück zum Zitat Semenenko VN. Some problems of supercavitating vehicle designing. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008. ISBN 5-88303-393-8. Semenenko VN. Some problems of supercavitating vehicle designing. Proceedings of the International Conference on Superfast Marine Vehicles Moving Above, Under and in Water Surface (SuperFAST’2008); 2–4 July 2008. St. Petersburg; 2008. ISBN 5-88303-393-8.
11.
Zurück zum Zitat Logvinovich GV, Serebryakov VV. On the methods of calculating a shape of the slender axisymmetric cavities. Gidromehanika. 1975;32:47–54 (In Russian). Logvinovich GV, Serebryakov VV. On the methods of calculating a shape of the slender axisymmetric cavities. Gidromehanika. 1975;32:47–54 (In Russian).
12.
Zurück zum Zitat Vlasenko YuD. Experimental investigations of supercavitating regime of flow around self-propelled models. Int J Fluid Mech Res. 2001;28(5):717–33. Vlasenko YuD. Experimental investigations of supercavitating regime of flow around self-propelled models. Int J Fluid Mech Res. 2001;28(5):717–33.
13.
Zurück zum Zitat Savchenko YuN, Semenenko VN. Special features of supercavitating flow around polygonal contours. Int J Fluid Mech Res. 2001;28(5):660–72.MathSciNet Savchenko YuN, Semenenko VN. Special features of supercavitating flow around polygonal contours. Int J Fluid Mech Res. 2001;28(5):660–72.MathSciNet
14.
Zurück zum Zitat Putilin SI. Some features of a supercavitating model dynamics. Int J Fluid Mech Res. 2001;28(5):631–43.MathSciNet Putilin SI. Some features of a supercavitating model dynamics. Int J Fluid Mech Res. 2001;28(5):631–43.MathSciNet
15.
Zurück zum Zitat Nesteruk I. Investigation of slender axisymmetric cavity form in fluid with gravity. Izv AN SSSR MFG. 1979;6:133–6 (In Russian). Nesteruk I. Investigation of slender axisymmetric cavity form in fluid with gravity. Izv AN SSSR MFG. 1979;6:133–6 (In Russian).
16.
Zurück zum Zitat Nesteruk I. Form of slender axisymmetric cavity. Izv AN SSSR MFG. 1980;4:38–47 (In Russian). Nesteruk I. Form of slender axisymmetric cavity. Izv AN SSSR MFG. 1980;4:38–47 (In Russian).
17.
Zurück zum Zitat Nesteruk I. Some problems of axisymmetric cavity flows. Izv AN SSSR MFG. 1982;1:28–34 (In Russian). Nesteruk I. Some problems of axisymmetric cavity flows. Izv AN SSSR MFG. 1982;1:28–34 (In Russian).
18.
Zurück zum Zitat Nesteruk I. The slender axisymmetric cavity form calculations based on the integral-differential equation. Izv AN SSSR MFG. 1985;5:83–90 (In Russian). Nesteruk I. The slender axisymmetric cavity form calculations based on the integral-differential equation. Izv AN SSSR MFG. 1985;5:83–90 (In Russian).
19.
20.
Zurück zum Zitat Faltinsen OM, Semenov YA. The effect of gravity and cavitation on a hydrofoil near the free surface. J Fluid Mech. 2008;597:371–94.MathSciNetMATHCrossRef Faltinsen OM, Semenov YA. The effect of gravity and cavitation on a hydrofoil near the free surface. J Fluid Mech. 2008;597:371–94.MathSciNetMATHCrossRef
21.
Zurück zum Zitat Savchenko YuN, Semenov YA. Hydrodynamic drag of a surface with the mixed boundary conditions. Prykladna Gidromehanika. 2005;7(2):54–62 (In Russian). Savchenko YuN, Semenov YA. Hydrodynamic drag of a surface with the mixed boundary conditions. Prykladna Gidromehanika. 2005;7(2):54–62 (In Russian).
22.
Zurück zum Zitat Savchenko YuN, Savchenko GYu. Efficiency estimation of the supercavitation using on the axisymmetric hulls. Prykladna Gidromehanika. 2004;6(4):78–83 (In Russian).MathSciNet Savchenko YuN, Savchenko GYu. Efficiency estimation of the supercavitation using on the axisymmetric hulls. Prykladna Gidromehanika. 2004;6(4):78–83 (In Russian).MathSciNet
23.
Zurück zum Zitat Savchenko YuN, Savchenko GYu. Cylinder planning on the supercavity surface. Prykladna Gidromehanika. 2007;9(1):81–5 (In Russian).MathSciNetMATH Savchenko YuN, Savchenko GYu. Cylinder planning on the supercavity surface. Prykladna Gidromehanika. 2007;9(1):81–5 (In Russian).MathSciNetMATH
24.
Zurück zum Zitat Savchenko YuN, Savchenko GYu. Near-wall cavitation on a vertical wall. Prykladna Gidromehanika. 2006;8(4):53–9 (In Russian).MATH Savchenko YuN, Savchenko GYu. Near-wall cavitation on a vertical wall. Prykladna Gidromehanika. 2006;8(4):53–9 (In Russian).MATH
25.
Zurück zum Zitat Nesteruk I. The problems of drag reduction in high speed hydrodynamics. The International Summer Scientific School “High Speed Hydrodynamics”; June 16–23, 2002. Cheboksary; 2002. p. 351–9. Nesteruk I. The problems of drag reduction in high speed hydrodynamics. The International Summer Scientific School “High Speed Hydrodynamics”; June 16–23, 2002. Cheboksary; 2002. p. 351–9.
26.
Zurück zum Zitat Nesteruk I. Drag reduction in high-speed hydrodynamics: supercavitation or unseparated shapes. CAV2006; 2006. Netherlands. Nesteruk I. Drag reduction in high-speed hydrodynamics: supercavitation or unseparated shapes. CAV2006; 2006. Netherlands.
27.
Zurück zum Zitat Nesteruk I. Drag calculation of slender cones using of the second approximation for created by them cavities. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2003;5(1):42–6 (In Ukrainian). Nesteruk I. Drag calculation of slender cones using of the second approximation for created by them cavities. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2003;5(1):42–6 (In Ukrainian).
28.
Zurück zum Zitat Nesteruk I. Partial cavitation on long bodies. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2004;6(3):64–75 (In Ukrainian). Nesteruk I. Partial cavitation on long bodies. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2004;6(3):64–75 (In Ukrainian).
30.
Zurück zum Zitat Nesteruk I. Simulation of axisymmetric and plane free surfaces by means of sources and doublets. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2003;5(2):37–44 (In Ukrainian). Nesteruk I. Simulation of axisymmetric and plane free surfaces by means of sources and doublets. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2003;5(2):37–44 (In Ukrainian).
31.
Zurück zum Zitat Nesteruk I. Drag diminishing of long axisymmetric high-speed bodies. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2009;11(2):55–67 (In Ukrainian).MATH Nesteruk I. Drag diminishing of long axisymmetric high-speed bodies. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2009;11(2):55–67 (In Ukrainian).MATH
32.
Zurück zum Zitat Manova ZI, Nesteruk I, Shepetyuk BD. Optimization problems for high-speed supercavitation motion on inertia with the non-slender cavitators. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2009;11(4):54–9 (In Ukrainian). Manova ZI, Nesteruk I, Shepetyuk BD. Optimization problems for high-speed supercavitation motion on inertia with the non-slender cavitators. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2009;11(4):54–9 (In Ukrainian).
33.
Zurück zum Zitat Gieseke TJ. Toward an optimal weapon system utilizing supercavitating projectiles. International Conference on Cavitation “Cav2001”, Pasadena; 2001, Session B3.002. Gieseke TJ. Toward an optimal weapon system utilizing supercavitating projectiles. International Conference on Cavitation “Cav2001”, Pasadena; 2001, Session B3.002.
34.
Zurück zum Zitat Serebryakov VV. The models of the supercavitation prediction for high speed motion in water. International Summer Scientific School “High Speed Hydrodynamics”. Cheboksary; 2002:71–92. Serebryakov VV. The models of the supercavitation prediction for high speed motion in water. International Summer Scientific School “High Speed Hydrodynamics”. Cheboksary; 2002:71–92.
35.
Zurück zum Zitat Serebryakov VV, Kirshner IN, Scherr GH. Some problems of high speed motion in water with supercavitation for sub-, trans- and supersonic mach numbers. Proceedings of the X International scientific school “High-speed hydrodynamics” and International conference «Hydromechanics. Mechanics. Power-plants» (to the 145-th anniversary of academician A.N.Krylov). Moscow/Cheboksary: Cheboksary department of Moscow State Open University; 2008. p. 73–104. ISBN 978-5-902891-35-2. Serebryakov VV, Kirshner IN, Scherr GH. Some problems of high speed motion in water with supercavitation for sub-, trans- and supersonic mach numbers. Proceedings of the X International scientific school “High-speed hydrodynamics” and International conference «Hydromechanics. Mechanics. Power-plants» (to the 145-th anniversary of academician A.N.Krylov). Moscow/Cheboksary: Cheboksary department of Moscow State Open University; 2008. p. 73–104. ISBN 978-5-902891-35-2.
36.
Zurück zum Zitat Nesteruk I, Semenenko VN. Problems of optimization of range of the supercavitation inertial motion at the fixed final depth. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2006;8(4):33–42 (In Ukrainian).MATH Nesteruk I, Semenenko VN. Problems of optimization of range of the supercavitation inertial motion at the fixed final depth. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2006;8(4):33–42 (In Ukrainian).MATH
37.
Zurück zum Zitat Nesteruk I, Savchenko YuN, Semenenko VN. Range optimization for supercavitating motion on inertia. Rep Ukrainian Acad Sci. 2006;8:57–66 (In Ukrainian). Nesteruk I, Savchenko YuN, Semenenko VN. Range optimization for supercavitating motion on inertia. Rep Ukrainian Acad Sci. 2006;8:57–66 (In Ukrainian).
38.
Zurück zum Zitat Nesteruk I. Range maximization for supercavitation inertial motion with the fixed initial depth. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2008;10(3):51–64 (In Ukrainian).MATH Nesteruk I. Range maximization for supercavitation inertial motion with the fixed initial depth. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2008;10(3):51–64 (In Ukrainian).MATH
39.
Zurück zum Zitat Nesteruk I. Hull optimization for high-speed vehicles: supercavitating and unseparated shapes. International Conference SuperFAST2008, July 2–4, 2008. St. Petersburg; 2008. Nesteruk I. Hull optimization for high-speed vehicles: supercavitating and unseparated shapes. International Conference SuperFAST2008, July 2–4, 2008. St. Petersburg; 2008.
40.
Zurück zum Zitat Savchenko YuN. Investigations of supercavitation flows. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2007;9(2–3):150–8 (In Russian).MATH Savchenko YuN. Investigations of supercavitation flows. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2007;9(2–3):150–8 (In Russian).MATH
41.
Zurück zum Zitat Buraga OA, Nesteruk I, Savchenko YuM. Comparison of the slender axisymmetric bodies drag by unseparated and supercavitation flow patterns. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2002;4(2):3–8 (In Ukrainian). Buraga OA, Nesteruk I, Savchenko YuM. Comparison of the slender axisymmetric bodies drag by unseparated and supercavitation flow patterns. Prykladna Gidromekhanika (Appl Hydromech), Kyiv. 2002;4(2):3–8 (In Ukrainian).
42.
Zurück zum Zitat Lorant M. Investigation into High-Speed of Underwater Craft. Naut Mag. 1968;200(5):273–6. Lorant M. Investigation into High-Speed of Underwater Craft. Naut Mag. 1968;200(5):273–6.
Metadaten
Titel
Drag Effectiveness of Supercavitating Underwater Hulls
verfasst von
Igor Nesteruk
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-23656-3_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.