Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Neural Computing and Applications 6/2021

19.06.2020 | Original Article

Dragonfly-based swarm system model for node identification in ultra-reliable low-latency communication

verfasst von: Sanjay Bhardwaj, Dong-Seong Kim

Erschienen in: Neural Computing and Applications | Ausgabe 6/2021

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

Latency and reliability are essential parameters for enabling ultra-reliable low-latency communication (URLLC). Therefore, an approach for node identification that satisfies the requirements of latency and reliability for URLLC based on the formation of swarms by dragonflies, called dragonfly node identification algorithm (DNIA), is proposed. This method maps bio-natural systems and legacy communication into metrics of URLLC, i.e., latency and reliability, for node identification. A performance analysis demonstrates that the new paradigm for mapping the metrics, i.e., latency and reliability, in terms of nodes (food source) and noise (predators) provides another dimension for URLLC. A comparative analysis proves that DNIA demonstrates significant impact on the improvement of latency, reliability, packet loss rate, as well as throughput. The robustness and efficiency of the proposed DNIA are evaluated using statistical analysis, convergence rate analysis, Wilcoxon test, Friedman rank test, and analysis of variance on classical as well as modern IEEE Congress on Evolutionary Computation 2014 benchmark functions. Moreover, simulation results show that DNIA outperforms other bioinspired optimization algorithms in terms of cumulative distributive function and average node identification errors. The conflicting objectives in the tradeoff between low latency and high reliability in URLLC are discussed on a Pareto front, which shows the improved and accurate approximation for DNIA on a true Pareto front. Further, DNIA is benchmarked against standard functions on the Pareto front, providing significantly superior results in terms of coverage as well as convergence.
Literatur
1.
Zurück zum Zitat Leyva-Mayorga I, Rodriguez-Hernandez M, Pla V, Martinez-Bauset J (2019) Filtering methods for efficient dynamic access control in 5g massive machine-type communication scenarios. Electronics 8(1):27 Leyva-Mayorga I, Rodriguez-Hernandez M, Pla V, Martinez-Bauset J (2019) Filtering methods for efficient dynamic access control in 5g massive machine-type communication scenarios. Electronics 8(1):27
2.
Zurück zum Zitat Mozaffari M, Saad W, Bennis M, Debbah M (2016) Unmanned aerial vehicle with underlaid device-to-device communications: performance and trade-offs. IEEE Trans Wirel Commun 15(6):3949–3963 Mozaffari M, Saad W, Bennis M, Debbah M (2016) Unmanned aerial vehicle with underlaid device-to-device communications: performance and trade-offs. IEEE Trans Wirel Commun 15(6):3949–3963
3.
4.
Zurück zum Zitat Shannon CE (1997) The mathematical theory of communication. 1963. MD Comput 14(4):306–317 Shannon CE (1997) The mathematical theory of communication. 1963. MD Comput 14(4):306–317
5.
Zurück zum Zitat Sheikh MU, S¨ae J, Lempi¨ainen J (2018) Multipath propagation analysis of 5G systems at higher frequencies in courtyard (small cell) environment. In: 2018 IEEE 5G World Forum (5GWF). IEEE, pp 239–243 Sheikh MU, S¨ae J, Lempi¨ainen J (2018) Multipath propagation analysis of 5G systems at higher frequencies in courtyard (small cell) environment. In: 2018 IEEE 5G World Forum (5GWF). IEEE, pp 239–243
6.
Zurück zum Zitat Mukherjee A (2018) Energy efficiency and delay in 5g ultra-reliable low-latency communications system architectures. IEEE Netw 32(2):55–61 Mukherjee A (2018) Energy efficiency and delay in 5g ultra-reliable low-latency communications system architectures. IEEE Netw 32(2):55–61
7.
Zurück zum Zitat Shariatmadari H, Duan R, Iraji S, Li Z, Uusitalo MA, Jantti R (2017) Resource allocations for ultra-reliable low-latency communications. Int J Wirel Inf Netw 24(3):317–327 Shariatmadari H, Duan R, Iraji S, Li Z, Uusitalo MA, Jantti R (2017) Resource allocations for ultra-reliable low-latency communications. Int J Wirel Inf Netw 24(3):317–327
8.
Zurück zum Zitat Lien SY, Hung SC, Deng DJ, Wang YJ (2017) Optimum ultra-reliable and low latency communications in 5 g new radio. Mob Netw Appl 23(4):1–8 Lien SY, Hung SC, Deng DJ, Wang YJ (2017) Optimum ultra-reliable and low latency communications in 5 g new radio. Mob Netw Appl 23(4):1–8
9.
Zurück zum Zitat Quang PTA, Kim D-S (2012) Enhancing real-time delivery of gradient routing for industrial wireless sensor networks. IEEE Trans Ind Inf 8(1):61–68 Quang PTA, Kim D-S (2012) Enhancing real-time delivery of gradient routing for industrial wireless sensor networks. IEEE Trans Ind Inf 8(1):61–68
10.
Zurück zum Zitat Pham TMT, Nguyen T-T, Kim D-S (2017) Geographical awareness hybrid routing protocol in mobile ad hoc networks. Wirel Netw 23(1):1–13 Pham TMT, Nguyen T-T, Kim D-S (2017) Geographical awareness hybrid routing protocol in mobile ad hoc networks. Wirel Netw 23(1):1–13
11.
Zurück zum Zitat Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15 Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv 41(3):15
12.
Zurück zum Zitat Fefferman NH (2017) Bio-inspired distributed decision algorithms for anomaly detection. Technical report. Rutgers University New Brunswick United States Fefferman NH (2017) Bio-inspired distributed decision algorithms for anomaly detection. Technical report. Rutgers University New Brunswick United States
13.
Zurück zum Zitat Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evolut Comput 44:101–112 Gupta S, Deep K (2019) A novel random walk grey wolf optimizer. Swarm Evolut Comput 44:101–112
14.
Zurück zum Zitat Gupta S, Deep K (2018) Cauchy grey wolf optimiser for continuous optimisation problems. J Exp Theor Artif Intell 30(6):1051–1075 Gupta S, Deep K (2018) Cauchy grey wolf optimiser for continuous optimisation problems. J Exp Theor Artif Intell 30(6):1051–1075
15.
Zurück zum Zitat Gupta S, Deep K, Heidari AA, Moayedi H, Chen H (2019) Harmonized salp chain-built optimization. Eng Comput 11:1–31 Gupta S, Deep K, Heidari AA, Moayedi H, Chen H (2019) Harmonized salp chain-built optimization. Eng Comput 11:1–31
16.
Zurück zum Zitat Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230 Gupta S, Deep K (2019) A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Syst Appl 119:210–230
17.
Zurück zum Zitat Gupta S, Deep K (2019) Improved sine cosine algorithm with crossover scheme for global optimization. Knowl Based Syst 165:374–406 Gupta S, Deep K (2019) Improved sine cosine algorithm with crossover scheme for global optimization. Knowl Based Syst 165:374–406
18.
Zurück zum Zitat Gupta S, Deep K (2019) A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl Intell 1–34 Gupta S, Deep K (2019) A novel hybrid sine cosine algorithm for global optimization and its application to train multilayer perceptrons. Appl Intell 1–34
19.
Zurück zum Zitat Kulkarni RV, Venayagamoorthy GK, Cheng MX (2009) Bio-inspired node localization in wireless sensor networks. In: 2009 IEEE international conference on systems, man and cybernetics. IEEE, pp 205–210 Kulkarni RV, Venayagamoorthy GK, Cheng MX (2009) Bio-inspired node localization in wireless sensor networks. In: 2009 IEEE international conference on systems, man and cybernetics. IEEE, pp 205–210
20.
Zurück zum Zitat Su R-Q, Lai Y-C, Wang X, Do Y (2014) Uncovering hidden nodes in complex networks in the presence of noise. Sci Rep 4:3944 Su R-Q, Lai Y-C, Wang X, Do Y (2014) Uncovering hidden nodes in complex networks in the presence of noise. Sci Rep 4:3944
21.
Zurück zum Zitat Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: IEEE 13th international conference on data mining. IEEE, pp 1151–1156 Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: IEEE 13th international conference on data mining. IEEE, pp 1151–1156
22.
Zurück zum Zitat Guo S, Zhong Z, He T (2009) Find: faulty node detection for wireless sensor networks. In: Proceedings of the 7th ACM conference on embedded networked sensor systems. ACM, pp 253–266 Guo S, Zhong Z, He T (2009) Find: faulty node detection for wireless sensor networks. In: Proceedings of the 7th ACM conference on embedded networked sensor systems. ACM, pp 253–266
23.
Zurück zum Zitat Hortos WS (2012) Bio-inspired, cross-layer protocol design for intrusion detection and identification in wireless sensor networks. In: 37th Annual IEEE conference on local computer networks-workshops. IEEE, pp 1030–1037 Hortos WS (2012) Bio-inspired, cross-layer protocol design for intrusion detection and identification in wireless sensor networks. In: 37th Annual IEEE conference on local computer networks-workshops. IEEE, pp 1030–1037
24.
Zurück zum Zitat Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Act Mob Comput 11(7):1207–1222 Milner S, Davis C, Zhang H, Llorca J (2012) Nature-inspired self-organization, control, and optimization in heterogeneous wireless networks. IEEE Trans Act Mob Comput 11(7):1207–1222
25.
26.
Zurück zum Zitat Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692 MathSciNetMATH Biglieri E, Proakis J, Shamai S (1998) Fading channels: information-theoretic and communications aspects. IEEE Trans Inf Theory 44(6):2619–2692 MathSciNetMATH
27.
Zurück zum Zitat Durisi G, Koch T, Popovski P (2016) Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc IEEE 104(9):1711–1726 Durisi G, Koch T, Popovski P (2016) Toward massive, ultrareliable, and low-latency wireless communication with short packets. Proc IEEE 104(9):1711–1726
28.
Zurück zum Zitat Gursoy MC (2013) Throughput analysis of buffer-constrained wireless systems in the finite blocklength regime. EURASIP J Wirel Commun Netw 2013(1):290 Gursoy MC (2013) Throughput analysis of buffer-constrained wireless systems in the finite blocklength regime. EURASIP J Wirel Commun Netw 2013(1):290
29.
Zurück zum Zitat Nokia, 5G For mission critical communication: achieve ultra-reliability and virtual zero latency, Nokia, Nokia White Paper Nokia, 5G For mission critical communication: achieve ultra-reliability and virtual zero latency, Nokia, Nokia White Paper
30.
Zurück zum Zitat Shehab M, Dosti E, Alves H, Latva-aho M (2017) On the effective capacity of mtc networks in the finite blocklength regime. In: 2017 European conference on networks and communications (EuCNC). IEEE, pp 1–5 Shehab M, Dosti E, Alves H, Latva-aho M (2017) On the effective capacity of mtc networks in the finite blocklength regime. In: 2017 European conference on networks and communications (EuCNC). IEEE, pp 1–5
31.
Zurück zum Zitat Angjelichinoski M, Trillingsgaard KF, Popovski P. A statistical learning approach to ultra-reliable low latency communication. arXiv preprint arXiv:​1809.​05515 Angjelichinoski M, Trillingsgaard KF, Popovski P. A statistical learning approach to ultra-reliable low latency communication. arXiv preprint arXiv:​1809.​05515
32.
Zurück zum Zitat Feng J, Feng Z, Wei Z, Li W, Roy S (2015) Optimal base station density in ultra-densification heterogeneous network. In: IEEE wireless communications and networking conference (WCNC). IEEE, pp 1452–1457 Feng J, Feng Z, Wei Z, Li W, Roy S (2015) Optimal base station density in ultra-densification heterogeneous network. In: IEEE wireless communications and networking conference (WCNC). IEEE, pp 1452–1457
33.
Zurück zum Zitat Vodak R, Bıl M, Krivankova Z (2018) A modified ant colony optimization algorithm to increase the speed of the road network recovery process after disasters. Int J Disast Risk Reduct 31:1092–1106 Vodak R, Bıl M, Krivankova Z (2018) A modified ant colony optimization algorithm to increase the speed of the road network recovery process after disasters. Int J Disast Risk Reduct 31:1092–1106
34.
Zurück zum Zitat Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178 Yang XS (2009) Firefly algorithms for multimodal optimization. In: International symposium on stochastic algorithms. Springer, pp 169–178
35.
Zurück zum Zitat Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature in- spired cooperative strategies for optimization (NICSO 2010), vol 284. Springer, pp 65–74 Yang XS (2010) A new metaheuristic bat-inspired algorithm. In: Nature in- spired cooperative strategies for optimization (NICSO 2010), vol 284. Springer, pp 65–74
36.
Zurück zum Zitat Pan J-S, Dao T-K et al (2019) A compact bat algorithm for unequal clustering in wireless sensor networks. Appl Sci 9(10):1973 Pan J-S, Dao T-K et al (2019) A compact bat algorithm for unequal clustering in wireless sensor networks. Appl Sci 9(10):1973
37.
Zurück zum Zitat Pan J-S, Kong L, Sung T-W, Tsai P-W, Snasel V (2018) A clustering scheme for wireless sensor networks based on genetic algorithm and dominating set. J Internet Technol 19(4):1111–1118 Pan J-S, Kong L, Sung T-W, Tsai P-W, Snasel V (2018) A clustering scheme for wireless sensor networks based on genetic algorithm and dominating set. J Internet Technol 19(4):1111–1118
38.
Zurück zum Zitat Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845 MathSciNetMATH Gandomi AH, Alavi AH (2012) Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 17(12):4831–4845 MathSciNetMATH
39.
Zurück zum Zitat Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073 MathSciNet Mirjalili S (2016) Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput Appl 27(4):1053–1073 MathSciNet
40.
Zurück zum Zitat Popovski P, Nielsen JJ, Stefanovic C, de Carvalho E, Strom E, Trillingsgaard KF, Bana A-S, Kim DM, Kotaba R, Park J et al (2018) Wireless access for ultra-reliable low-latency communication: principles and building blocks. IEEE Netw 32(2):16–23 Popovski P, Nielsen JJ, Stefanovic C, de Carvalho E, Strom E, Trillingsgaard KF, Bana A-S, Kim DM, Kotaba R, Park J et al (2018) Wireless access for ultra-reliable low-latency communication: principles and building blocks. IEEE Netw 32(2):16–23
41.
Zurück zum Zitat Thery M, Gomez D (2010) Insect colours and visual appearance in the eyes of their predators. Adv Insect Physiol 38:267–363 Thery M, Gomez D (2010) Insect colours and visual appearance in the eyes of their predators. Adv Insect Physiol 38:267–363
42.
Zurück zum Zitat Combes S, Salcedo M, Pandit M, Iwasaki J (2013) Capture success and efficiency of dragonflies pursuing different types of prey. Integr Comp Biol 53(5):787–798 Combes S, Salcedo M, Pandit M, Iwasaki J (2013) Capture success and efficiency of dragonflies pursuing different types of prey. Integr Comp Biol 53(5):787–798
43.
Zurück zum Zitat Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5:285–298 Hengstenberg R (1993) Multisensory control in insect oculomotor systems. Rev Oculomot Res 5:285–298
44.
Zurück zum Zitat Liu J, Zhang Q (2018) Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6:12825–12837 Liu J, Zhang Q (2018) Offloading schemes in mobile edge computing for ultra-reliable low latency communications. IEEE Access 6:12825–12837
45.
Zurück zum Zitat Dickinson MH (2015) Motor control: how dragonflies catch their prey. Curr Biol 25(6):R232–R234 Dickinson MH (2015) Motor control: how dragonflies catch their prey. Curr Biol 25(6):R232–R234
46.
Zurück zum Zitat Kral K (2003) Behavioural analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behav Proc 64:1–12 Kral K (2003) Behavioural analytical studies of the role of head movements in depth perception in insects, birds and mammals. Behav Proc 64:1–12
47.
Zurück zum Zitat Nash FR (1993) Estimating device reliability: assessment of credibility. The Springer international series in engineering and computer science. Kluwer Academic New York, NY MATH Nash FR (1993) Estimating device reliability: assessment of credibility. The Springer international series in engineering and computer science. Kluwer Academic New York, NY MATH
48.
Zurück zum Zitat Lyu MR et al (1996) Handbook of software reliability engineering, vol 222. IEEE Computer Society Press, Los Angeles Lyu MR et al (1996) Handbook of software reliability engineering, vol 222. IEEE Computer Society Press, Los Angeles
49.
Zurück zum Zitat Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. In: Nature-inspired optimizers, vol 811. Springer, pp 47–67 Mafarja M, Heidari AA, Faris H, Mirjalili S, Aljarah I (2020) Dragonfly algorithm: theory, literature review, and application in feature selection. In: Nature-inspired optimizers, vol 811. Springer, pp 47–67
50.
Zurück zum Zitat Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112 Cheng M-Y, Prayogo D (2014) Symbiotic organisms search: a new metaheuristic optimization algorithm. Comput Struct 139:98–112
51.
Zurück zum Zitat Adorio EP, Diliman U (2005) Mvf-multivariate test functions library in c for unconstrained global optimization, Quezon City, Metro Manila, Philippines, pp 100–104 Adorio EP, Diliman U (2005) Mvf-multivariate test functions library in c for unconstrained global optimization, Quezon City, Metro Manila, Philippines, pp 100–104
52.
Zurück zum Zitat Laguna M, Martı R (2005) Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J Glob Optim 33(2):235–255 MathSciNetMATH Laguna M, Martı R (2005) Experimental testing of advanced scatter search designs for global optimization of multimodal functions. J Glob Optim 33(2):235–255 MathSciNetMATH
53.
Zurück zum Zitat Molga M, Smutnicki C. (2005) Test functions for optimization needs. In: Test functions for optimization needs, vol 101, pp 1–43 Molga M, Smutnicki C. (2005) Test functions for optimization needs. In: Test functions for optimization needs, vol 101, pp 1–43
54.
55.
Zurück zum Zitat Liang J, Qu B, Suganthan P (2014) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report. Nanyang Technological University, Singapore, p 635 Liang J, Qu B, Suganthan P (2014) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report. Nanyang Technological University, Singapore, p 635
56.
Zurück zum Zitat Zheng T, Luo W (2019) An enhanced lightning attachment procedure optimization with quasi-opposition-based learning and dimensional search strategies. Comput Intell Neurosci 2019:1589303 Zheng T, Luo W (2019) An enhanced lightning attachment procedure optimization with quasi-opposition-based learning and dimensional search strategies. Comput Intell Neurosci 2019:1589303
57.
Zurück zum Zitat Jain M, Singh V, Rani A (2005) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evolut Comput 44:148–175 Jain M, Singh V, Rani A (2005) A novel nature-inspired algorithm for optimization: squirrel search algorithm. Swarm Evolut Comput 44:148–175
58.
Zurück zum Zitat Liang J, Qu B, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report 201411A. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, vol 29. Nanyang Technological University, Singapore, pp 625–640 Liang J, Qu B, Suganthan P, Chen Q (2014) Problem definitions and evaluation criteria for the CEC 2015 competition on learning-based real-parameter single objective optimization. Technical Report 201411A. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, vol 29. Nanyang Technological University, Singapore, pp 625–640
59.
Zurück zum Zitat Deb K (2001) Nonlinear goal programming using multi-objective genetic algorithms. J Oper Res Soc 52(3):291–302 MATH Deb K (2001) Nonlinear goal programming using multi-objective genetic algorithms. J Oper Res Soc 52(3):291–302 MATH
60.
Zurück zum Zitat Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195 Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195
61.
Zurück zum Zitat Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and-dominance. In: International conference on evolutionary multi-criterion optimization. Springer, pp 505–519 Sierra MR, Coello CAC (2005) Improving pso-based multi-objective optimization using crowding, mutation and-dominance. In: International conference on evolutionary multi-criterion optimization. Springer, pp 505–519
62.
Zurück zum Zitat Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279 Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8(3):256–279
63.
Zurück zum Zitat Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83 Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80–83
64.
Zurück zum Zitat Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18 Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evolut Comput 1(1):3–18
65.
Zurück zum Zitat Mazzeo BA, Rice M (2016) Bit error rate comparison statistics and hypothesis tests for inverse sampling (negative binomial) experiments. IEEE Trans Commun 64(5):2192–2203 Mazzeo BA, Rice M (2016) Bit error rate comparison statistics and hypothesis tests for inverse sampling (negative binomial) experiments. IEEE Trans Commun 64(5):2192–2203
Metadaten
Titel
Dragonfly-based swarm system model for node identification in ultra-reliable low-latency communication
verfasst von
Sanjay Bhardwaj
Dong-Seong Kim
Publikationsdatum
19.06.2020
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 6/2021
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-020-05056-6

Weitere Artikel der Ausgabe 6/2021

Neural Computing and Applications 6/2021 Zur Ausgabe

Premium Partner