Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

19.06.2020 | Original Article | Ausgabe 6/2021

Neural Computing and Applications 6/2021

Dragonfly-based swarm system model for node identification in ultra-reliable low-latency communication

Zeitschrift:
Neural Computing and Applications > Ausgabe 6/2021
Autoren:
Sanjay Bhardwaj, Dong-Seong Kim
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Latency and reliability are essential parameters for enabling ultra-reliable low-latency communication (URLLC). Therefore, an approach for node identification that satisfies the requirements of latency and reliability for URLLC based on the formation of swarms by dragonflies, called dragonfly node identification algorithm (DNIA), is proposed. This method maps bio-natural systems and legacy communication into metrics of URLLC, i.e., latency and reliability, for node identification. A performance analysis demonstrates that the new paradigm for mapping the metrics, i.e., latency and reliability, in terms of nodes (food source) and noise (predators) provides another dimension for URLLC. A comparative analysis proves that DNIA demonstrates significant impact on the improvement of latency, reliability, packet loss rate, as well as throughput. The robustness and efficiency of the proposed DNIA are evaluated using statistical analysis, convergence rate analysis, Wilcoxon test, Friedman rank test, and analysis of variance on classical as well as modern IEEE Congress on Evolutionary Computation 2014 benchmark functions. Moreover, simulation results show that DNIA outperforms other bioinspired optimization algorithms in terms of cumulative distributive function and average node identification errors. The conflicting objectives in the tradeoff between low latency and high reliability in URLLC are discussed on a Pareto front, which shows the improved and accurate approximation for DNIA on a true Pareto front. Further, DNIA is benchmarked against standard functions on the Pareto front, providing significantly superior results in terms of coverage as well as convergence.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2021

Neural Computing and Applications 6/2021 Zur Ausgabe

Premium Partner