Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

03.02.2021 | Regular Paper | Ausgabe 2/2021

The VLDB Journal 2/2021

Dragoon: a hybrid and efficient big trajectory management system for offline and online analytics

Zeitschrift:
The VLDB Journal > Ausgabe 2/2021
Autoren:
Ziquan Fang, Lu Chen, Yunjun Gao, Lu Pan, Christian S. Jensen
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

With the explosive use of GPS-enabled devices, increasingly massive volumes of trajectory data capturing the movements of people and vehicles are becoming available, which is useful in many application areas, such as transportation, traffic management, and location-based services. As a result, many trajectory data management and analytic systems have emerged that target either offline or online settings. However, some applications call for both offline and online analyses. For example, in traffic management scenarios, offline analyses of historical trajectory data can be used for traffic planning purposes, while online analyses of streaming trajectories can be adopted for congestion monitoring purposes. Existing trajectory-based systems tend to perform offline and online trajectory analysis separately, which is inefficient. In this paper, we propose a hybrid and efficient framework, called Dragoon, based on Spark, to support both offline and online big trajectory management and analytics. The framework features a mutable resilient distributed dataset model, including RDD Share, RDD Update, and RDD Mirror, which enables hybrid storage of historical and streaming trajectories. It also contains a real-time partitioner capable of efficiently distributing trajectory data and supporting both offline and online analyses. Therefore, Dragoon provides a hybrid analysis pipeline. Support for several typical trajectory queries and mining tasks demonstrates the flexibility of Dragoon. An extensive experimental study using both real and synthetic trajectory datasets shows that Dragoon (1) has similar offline trajectory query performance with the state-of-the-art system UlTraMan; (2) decreases up to doubled storage overhead compared with UlTraMan during trajectory editing; (3) achieves at least 40% improvement of scalability compared with popular streaming processing frameworks (i.e., Flink and Spark Streaming); and (4) offers an average doubled performance improvement for online trajectory data analytics.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 2/2021

The VLDB Journal 2/2021 Zur Ausgabe

Premium Partner