Skip to main content
Erschienen in: Journal of Computational Electronics 3/2016

22.06.2016

Drain current multiplication in thin pillar vertical MOSFETs due to depletion isolation and charge coupling

verfasst von: M. M. A. Hakim, C. H. de Groot, S. Hall, Peter Ashburn

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Drain current multiplication in vertical MOSFETs due to body isolation by the drain depletion region and gate–gate charge coupling is investigated at pillar thicknesses in the range of 200–10 nm. For pillar thickness >120 nm depletion isolation does not occur and hence the body contact is found to be completely effective with no multiplication in drain current, whereas for pillar thicknesses <60 nm depletion isolation occurs for all drain biases and hence the body contact is ineffective. For intermediate pillar thicknesses of 60–120 nm, even though depletion isolation is apparent, the body contact is still effective in improving floating body effects and breakdown. At these intermediate pillar thicknesses, a kink is also observed in the output characteristics due to partial depletion isolation. The charging kink and the breakdown behavior are characterized as a function of pillar thickness, and a transition in the transistor behavior is seen at a pillar thickness of 60 nm. For pillar thickness greater than 60 nm, the voltage at which body charging occurs decreases (and the normalized breakdown current increases) with decreasing pillar thickness, whereas for pillar thickness less than 60 nm, the opposite trend is seen. The relative contributions to the drain current of depletion isolation and the inherent gate–gate charge coupling are quantified. For pillar thickness between 120 and 80 nm, the rise in the drain current is found to be mainly due to depletion isolation, whereas for pillar thicknesses <60 nm, the increase in the drain current is found to be governed by the inherent gate–gate charge coupling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Taur, Y., et al.: CMOS scaling into nanometer regime. Proc. IEEE 85, 486–504 (1997)CrossRef Taur, Y., et al.: CMOS scaling into nanometer regime. Proc. IEEE 85, 486–504 (1997)CrossRef
2.
Zurück zum Zitat Kim, K., Fossum, J.G.: Double-gate CMOS: symmetrical-versus asymmetrical-gate devices. IEEE Trans. Electron Devices 48, 294–299 (2001)CrossRef Kim, K., Fossum, J.G.: Double-gate CMOS: symmetrical-versus asymmetrical-gate devices. IEEE Trans. Electron Devices 48, 294–299 (2001)CrossRef
3.
Zurück zum Zitat M. Leong et al.: DC and AC performance analysis of 25 nm symmetric/asymmetric double-gate, back-gate and bulk CMOS. In: IEEE on simulation of semiconductor processes and device conference, Seattle, pp. 147–150 (2000) M. Leong et al.: DC and AC performance analysis of 25 nm symmetric/asymmetric double-gate, back-gate and bulk CMOS. In: IEEE on simulation of semiconductor processes and device conference, Seattle, pp. 147–150 (2000)
4.
Zurück zum Zitat Ghani, T. et al.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. In: Symposium on VLSI technology digest of technical papers, pp. 174–175 (2000) Ghani, T. et al.: Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors. In: Symposium on VLSI technology digest of technical papers, pp. 174–175 (2000)
5.
Zurück zum Zitat Keyes, R.W.: The effect of randomness in the distribution of impurity atoms on FET threshold. Appl. Phys. A 8, 251–259 (1975)CrossRef Keyes, R.W.: The effect of randomness in the distribution of impurity atoms on FET threshold. Appl. Phys. A 8, 251–259 (1975)CrossRef
6.
Zurück zum Zitat Tanaka, T., Suzuki, K., Horie, H., Sugii, T.: Ultrafast operation of Vth-adjusted p+-n+ double gate SOI MOSFETs. IEEE Electron Device Lett. 15, 386–388 (1994)CrossRef Tanaka, T., Suzuki, K., Horie, H., Sugii, T.: Ultrafast operation of Vth-adjusted p+-n+ double gate SOI MOSFETs. IEEE Electron Device Lett. 15, 386–388 (1994)CrossRef
7.
Zurück zum Zitat Cloinge, J.P. et al.: Silicon-on-insulator gate all around device. In: IEDM technical digest, pp. 595–598. San Fransisco (1990) Cloinge, J.P. et al.: Silicon-on-insulator gate all around device. In: IEDM technical digest, pp. 595–598. San Fransisco (1990)
8.
Zurück zum Zitat Lee, J.H. et al.: Super self aligned double-gate (SSDG) MOSFETS utilizing oxidation rate difference and selective epitaxy. In: IEDM technical digest, pp. 71–74. Washington (1999) Lee, J.H. et al.: Super self aligned double-gate (SSDG) MOSFETS utilizing oxidation rate difference and selective epitaxy. In: IEDM technical digest, pp. 71–74. Washington (1999)
9.
Zurück zum Zitat Saremi, M., Ebrahimi, B., Afzali-kusha, A.: Process variation study of ground plane SOI MOSFET, In: \(2^{{\rm nd}}\) Asia symposium on quality electronic design (ASQED), pp. 66–69 (2010) Saremi, M., Ebrahimi, B., Afzali-kusha, A.: Process variation study of ground plane SOI MOSFET, In: \(2^{{\rm nd}}\) Asia symposium on quality electronic design (ASQED), pp. 66–69 (2010)
10.
Zurück zum Zitat Liu, Y., et al.: Ideal rectangular cross-section Si-Fin channel double-gate MOSFETs fabricated using orientation-dependent wet etching. IEEE Electron Device Lett. 24, 484–486 (2003)CrossRef Liu, Y., et al.: Ideal rectangular cross-section Si-Fin channel double-gate MOSFETs fabricated using orientation-dependent wet etching. IEEE Electron Device Lett. 24, 484–486 (2003)CrossRef
11.
Zurück zum Zitat Bin Yu et al.: Finfet scaling to 10 nm gate length. In: IEDM technical digest, pp. 251–253 (2002) Bin Yu et al.: Finfet scaling to 10 nm gate length. In: IEDM technical digest, pp. 251–253 (2002)
12.
Zurück zum Zitat Hisamoto, Digh, et al.: Finfet-a self aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47, 2320–2325 (2000)CrossRef Hisamoto, Digh, et al.: Finfet-a self aligned double-gate MOSFET scalable to 20 nm. IEEE Trans Electron Devices 47, 2320–2325 (2000)CrossRef
13.
Zurück zum Zitat Saremi, M., Afzali-kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor (GP-FinFET): a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRef Saremi, M., Afzali-kusha, A., Mohammadi, S.: Ground plane fin-shaped field effect transistor (GP-FinFET): a FinFET for low leakage power circuits. Microelectron. Eng. 95, 74–82 (2012)CrossRef
14.
Zurück zum Zitat Aghababa, H., Ebrahimi, B., Afzali-kusha, A., Saremi, M.: G4-FET modeling for circuit simulation by adaptive neuro-fuzzy training systems. IEICE Electron. Express 9, 881–887 (2012)CrossRef Aghababa, H., Ebrahimi, B., Afzali-kusha, A., Saremi, M.: G4-FET modeling for circuit simulation by adaptive neuro-fuzzy training systems. IEICE Electron. Express 9, 881–887 (2012)CrossRef
15.
Zurück zum Zitat Schulz, T., Roesner, W., Risch, L. Langemann, U.: 50-nm Vertical sidewall transistors with high channel doping concentrations. In: IEDM technical digest, pp. 61–64 (2000) Schulz, T., Roesner, W., Risch, L. Langemann, U.: 50-nm Vertical sidewall transistors with high channel doping concentrations. In: IEDM technical digest, pp. 61–64 (2000)
16.
Zurück zum Zitat Masahara, M., Matsukawa, T., Ishii, K., Liu, Y., Tanoue, H. et al.: 15-nm-Thick Si channel wall vertical double-gate MOSFET. In: IEDM technical digest, pp. 949–951 (2002) Masahara, M., Matsukawa, T., Ishii, K., Liu, Y., Tanoue, H. et al.: 15-nm-Thick Si channel wall vertical double-gate MOSFET. In: IEDM technical digest, pp. 949–951 (2002)
17.
Zurück zum Zitat Zheng, X., Pak, M., Huang, J., Choi, S., Wang, K.L.: A vertical MOSFET with a leveling, surrounding gate fabricated on a nanoscale island. In: IEEE device research conference digest, pp. 70–71 (1998) Zheng, X., Pak, M., Huang, J., Choi, S., Wang, K.L.: A vertical MOSFET with a leveling, surrounding gate fabricated on a nanoscale island. In: IEEE device research conference digest, pp. 70–71 (1998)
18.
Zurück zum Zitat Schulz, T., Rosner, W., Risch, L., Korbel, A., Langmann, U.: Short-channel vertical sidewall MOSFETs. IEEE Trans. Electron Devices 48(8), 1783–1788 (2001)CrossRef Schulz, T., Rosner, W., Risch, L., Korbel, A., Langmann, U.: Short-channel vertical sidewall MOSFETs. IEEE Trans. Electron Devices 48(8), 1783–1788 (2001)CrossRef
19.
Zurück zum Zitat Moers, J., Trellenkamp, S., goryll, M., Marso, M., van der Hart, A., Hogg, S., et al.: Top contacts for vertical double-gate MOSFETs. Microelectron. Eng. 64, 465–471 (2002)CrossRef Moers, J., Trellenkamp, S., goryll, M., Marso, M., van der Hart, A., Hogg, S., et al.: Top contacts for vertical double-gate MOSFETs. Microelectron. Eng. 64, 465–471 (2002)CrossRef
20.
Zurück zum Zitat Auth, C.P., Plummer, J.D.: Vertical, fully-depleted, surrounding gate MOS-FETs on sub-0.1um thick pillars. In: IEEE device research conference digest, pp. 172–175 (1996) Auth, C.P., Plummer, J.D.: Vertical, fully-depleted, surrounding gate MOS-FETs on sub-0.1um thick pillars. In: IEEE device research conference digest, pp. 172–175 (1996)
21.
Zurück zum Zitat Armstrong, G.A., Brotherton, S.D., Ayres, J.R.: A comparison of the kink effect in polysilicon thin film transistors and silicon on insulator transistors. Solid State Electron. 39, 1337–1346 (1996)CrossRef Armstrong, G.A., Brotherton, S.D., Ayres, J.R.: A comparison of the kink effect in polysilicon thin film transistors and silicon on insulator transistors. Solid State Electron. 39, 1337–1346 (1996)CrossRef
22.
Zurück zum Zitat Fossum, J.G., Krishnan, S., Faynot, O., Cristoloveanu, S.: Subthreshold kinks in fully depleted SOI MOSFET’s. IEEE Electron Device Lett. 16, 542–544 (1995)CrossRef Fossum, J.G., Krishnan, S., Faynot, O., Cristoloveanu, S.: Subthreshold kinks in fully depleted SOI MOSFET’s. IEEE Electron Device Lett. 16, 542–544 (1995)CrossRef
23.
Zurück zum Zitat Kelvin Hui et al.: Body self bias in fully depleted and non-fully depleted SOI devices. In: Proceedings 1994 IEEE international SOI conference, pp. 65–66 (1994) Kelvin Hui et al.: Body self bias in fully depleted and non-fully depleted SOI devices. In: Proceedings 1994 IEEE international SOI conference, pp. 65–66 (1994)
24.
Zurück zum Zitat Balestra, F., et al.: Moderate kink effect in fully depleted thin-film SOI MOSFET’s. Electron. Lett. 31, 326–327 (1995)CrossRef Balestra, F., et al.: Moderate kink effect in fully depleted thin-film SOI MOSFET’s. Electron. Lett. 31, 326–327 (1995)CrossRef
25.
Zurück zum Zitat Terauchi, M., Shigyo, N., Nitayama, A., Horiguchi, F.: Depletion isolation effect” of surround gate transistors. IEEE Trans. Electron Devices 44, 2303–2305 (1997)CrossRef Terauchi, M., Shigyo, N., Nitayama, A., Horiguchi, F.: Depletion isolation effect” of surround gate transistors. IEEE Trans. Electron Devices 44, 2303–2305 (1997)CrossRef
26.
Zurück zum Zitat Silvaco international, Atlas User’s Manual Device Simulation Software, Silvao International Ltd., Santa Clara, Dec., (2002) Silvaco international, Atlas User’s Manual Device Simulation Software, Silvao International Ltd., Santa Clara, Dec., (2002)
27.
Zurück zum Zitat Orshansky, M., et al.: Polysilicon depletion and inversion layer quantization on NMOSFET scaling. In: IEEE conference digest, \(56^{{\rm th}}\) annual device research, pp. 18–19 (1998) Orshansky, M., et al.: Polysilicon depletion and inversion layer quantization on NMOSFET scaling. In: IEEE conference digest, \(56^{{\rm th}}\) annual device research, pp. 18–19 (1998)
28.
Zurück zum Zitat Wong, H., et al.: Device design considerations for double-gate ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: IEDM technical digest, pp. 407 (1998) Wong, H., et al.: Device design considerations for double-gate ground-plane, and single-gated ultra-thin SOI MOSFET’s at the 25 nm channel length generation. In: IEDM technical digest, pp. 407 (1998)
29.
Zurück zum Zitat Van Overstraeten, R., De Man, H.: Measurements of the ionization rates in diffused silicon p-n junctions. Solid State Electron. 13, 583–608 (1970) Van Overstraeten, R., De Man, H.: Measurements of the ionization rates in diffused silicon p-n junctions. Solid State Electron. 13, 583–608 (1970)
30.
Zurück zum Zitat Allibert, F., et al.: Transition from partial to full depletion in silicon-on-insulator transistors: impact of channel length. Appl. Phys. Lett. 84, 1192–1194 (2004)CrossRef Allibert, F., et al.: Transition from partial to full depletion in silicon-on-insulator transistors: impact of channel length. Appl. Phys. Lett. 84, 1192–1194 (2004)CrossRef
31.
Zurück zum Zitat Lim, H.-K., Fossum, J.G.: Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 30, 1244–1251 (1983)CrossRef Lim, H.-K., Fossum, J.G.: Threshold voltage of thin-film silicon-on-insulator (SOI) MOSFET’s. IEEE Trans. Electron Devices 30, 1244–1251 (1983)CrossRef
Metadaten
Titel
Drain current multiplication in thin pillar vertical MOSFETs due to depletion isolation and charge coupling
verfasst von
M. M. A. Hakim
C. H. de Groot
S. Hall
Peter Ashburn
Publikationsdatum
22.06.2016
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2016
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-016-0853-y

Weitere Artikel der Ausgabe 3/2016

Journal of Computational Electronics 3/2016 Zur Ausgabe

Neuer Inhalt