Skip to main content

07.07.2024

Drinkers Voice Recognition Intelligent System: An Ensemble Stacking Machine Learning Approach

verfasst von: Panduranga Vital Terlapu

Erschienen in: Annals of Data Science

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Alcohol's dehydrating effects can cause vocal cords to dry out, potentially causing temporary voice changes and increasing the risk of vocal strain or damage. Short-term changes in pitch, volume, and alcohol consumption can cause voice clarity, which typically returns to normal after the effects of alcohol have subsided. Data science improves voice recognition by analyzing large volumes of voice data, training machine learning (ML) models, extracting meaningful features, and using deep learning and natural language processing techniques. The research paper proposes a novel approach for identifying and classifying individuals as drinkers or non-drinkers based on their voice patterns. We collect voice data from both drinkers and non-drinkers. The study utilizes an ensemble ML technique known as stacking to combine the predictive power of multiple models, including Naive Bayes, K-NN(Nearest Neighbors), Decision (DTS) Trees, and Support (SVM) Vector Machine. Different metrics, like AUC, CA, F1 score, Recall, and precision, are implemented to evaluate the performance of each model. The stacking ensemble model stands out with the highest AUC of 0.9890, showing its excellent capability to distinguish between individuals who drink and those who don't. The SVM model also performs exceptionally well, with an AUC of 0.9861. The study shows the efficacy of the ensemble ML approach for identifying voice-based drinkers, offering significant insights for creating intelligent systems to detect alcohol-related voice issues accurately. This research advanced ensemble Stacking ML techniques in alcohol use disorder detection and opened possibilities for developing real-world applications in healthcare and behavioral analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
11.
Zurück zum Zitat Wakista GW, Abhayarathne SJ, Mendis GT, Arunatileka SM, Sandaruwan KD, Gunawardena SA, Fernando R (2014) Effect of alcohol on suprasegmental features of voice. In: 2014 4th World Congress on Information and Communication Technologies (WICT 2014), pp 269–274. IEEE. https://doi.org/10.1109/WICT.2014.7077277 Wakista GW, Abhayarathne SJ, Mendis GT, Arunatileka SM, Sandaruwan KD, Gunawardena SA, Fernando R (2014) Effect of alcohol on suprasegmental features of voice. In: 2014 4th World Congress on Information and Communication Technologies (WICT 2014), pp 269–274. IEEE. https://​doi.​org/​10.​1109/​WICT.​2014.​7077277
14.
Zurück zum Zitat Shi Y (2022) Advances in big data analytics: theory algorithm and practice. Springer, SingaporeCrossRef Shi Y (2022) Advances in big data analytics: theory algorithm and practice. Springer, SingaporeCrossRef
15.
Zurück zum Zitat Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef Shi Y, Tian Y, Kou G, Peng Y, Li J (2011) Optimization based data mining: theory and applications. Springer, BerlinCrossRef
16.
Zurück zum Zitat Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York Olson DL, Shi Y (2007) Introduction to business data mining. McGraw-Hill/Irwin, New York
19.
Zurück zum Zitat Shopon M, Hossain Bari ASM, Bhatia Y, Narayanaswamy PK, Tumpa SN, Sieu B, Gavrilova M (2022) Biometric system de-identification: concepts, applications, and open problems. In: Chen YW, Vaidya A, Mahorkar C, Jain LC, Lim CP (eds) Handbook of artificial intelligence in healthcare. intelligent systems reference library. Springer, Cham. https://doi.org/10.1007/978-3-030-83620-7_17CrossRef Shopon M, Hossain Bari ASM, Bhatia Y, Narayanaswamy PK, Tumpa SN, Sieu B, Gavrilova M (2022) Biometric system de-identification: concepts, applications, and open problems. In: Chen YW, Vaidya A, Mahorkar C, Jain LC, Lim CP (eds) Handbook of artificial intelligence in healthcare. intelligent systems reference library. Springer, Cham. https://​doi.​org/​10.​1007/​978-3-030-83620-7_​17CrossRef
20.
Zurück zum Zitat Gutierrez MA, Fast ML, Ngu AH, Gao BJ (2016) Real-time prediction of blood alcohol content using smartwatch sensor data. In: Smart Health: International Conference, ICSH 2015, Phoenix, AZ, USA, November 17–18, 2015. Revised Selected Papers, Springer International Publishing, pp 175–186. https://doi.org/10.1007/978-3-319-29175-8_16 Gutierrez MA, Fast ML, Ngu AH, Gao BJ (2016) Real-time prediction of blood alcohol content using smartwatch sensor data. In: Smart Health: International Conference, ICSH 2015, Phoenix, AZ, USA, November 17–18, 2015. Revised Selected Papers, Springer International Publishing, pp 175–186. https://​doi.​org/​10.​1007/​978-3-319-29175-8_​16
24.
Zurück zum Zitat Curtis BL, Lookatch SJ, Ramo DE, McKay JR, Feinn RS, Kranzler HR (2018) Meta-analysis of the association of alcohol-related social media use with alcohol consumption and alcohol-related problems in adolescents and young adults. Alcohol Clin Exp Res 42(6):978–986. https://doi.org/10.1111/acer.13642CrossRef Curtis BL, Lookatch SJ, Ramo DE, McKay JR, Feinn RS, Kranzler HR (2018) Meta-analysis of the association of alcohol-related social media use with alcohol consumption and alcohol-related problems in adolescents and young adults. Alcohol Clin Exp Res 42(6):978–986. https://​doi.​org/​10.​1111/​acer.​13642CrossRef
25.
Zurück zum Zitat Voas RB, Fell JC (2010) Preventing alcohol-related problems through health policy research. Alcohol Res Health 33(1–2):18–28 Voas RB, Fell JC (2010) Preventing alcohol-related problems through health policy research. Alcohol Res Health 33(1–2):18–28
26.
Zurück zum Zitat Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG (2022) Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J Am Chem Soc 144(2):1045–1055. https://doi.org/10.1021/jacs.1c12203CrossRef Kariofillis SK, Jiang S, Żurański AM, Gandhi SS, Martinez Alvarado JI, Doyle AG (2022) Using data science to guide aryl bromide substrate scope analysis in a Ni/photoredox-catalyzed cross-coupling with acetals as alcohol-derived radical sources. J Am Chem Soc 144(2):1045–1055. https://​doi.​org/​10.​1021/​jacs.​1c12203CrossRef
32.
41.
Zurück zum Zitat PanduRanga Vital T, Lakshmi BG, Swapna Rekha H, Dhana Lakshmi M (2019) Student Performance Analysis with Using Statistical and Cluster Studies. In: Soft Computing in Data Analytics: Proceedings of International Conference on SCDA 2018, pp 743–757. Springer Singapore. https://doi.org/10.1007/978-981-13-0514-6_71 PanduRanga Vital T, Lakshmi BG, Swapna Rekha H, Dhana Lakshmi M (2019) Student Performance Analysis with Using Statistical and Cluster Studies. In: Soft Computing in Data Analytics: Proceedings of International Conference on SCDA 2018, pp 743–757. Springer Singapore. https://​doi.​org/​10.​1007/​978-981-13-0514-6_​71
Metadaten
Titel
Drinkers Voice Recognition Intelligent System: An Ensemble Stacking Machine Learning Approach
verfasst von
Panduranga Vital Terlapu
Publikationsdatum
07.07.2024
Verlag
Springer Berlin Heidelberg
Erschienen in
Annals of Data Science
Print ISSN: 2198-5804
Elektronische ISSN: 2198-5812
DOI
https://doi.org/10.1007/s40745-024-00559-8