Skip to main content

2024 | OriginalPaper | Buchkapitel

8. Driver Skill Profiling Using Machine Learning

verfasst von : Nadeem Akhtar, Mithun Mohan

Erschienen in: Infrastructure and Built Environment for Sustainable and Resilient Societies

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Road safety is a critical aspect of public safety, and driving skills are essential to ensuring safety on the road. An accurate understanding of one's driving abilities is crucial in promoting safe driving practices and reducing the risk of accidents. Overconfidence and underestimating road events can lead to a false sense of handling emergencies and may result in a higher risk of traffic offenses and accidents. Young and novice drivers are particularly susceptible to these issues and may overestimate their abilities, leading to a higher risk tolerance. Machine learning is a viable approach that can compare perceived and actual skills to measure subjective driving skills accurately. A scoring system based on machine learning algorithms can quantify driver skills effectively and improve self-awareness, ultimately contributing to increased road safety. The proposed scoring system can give drivers an accurate assessment of their abilities, helping them take necessary corrective actions to work on their weaknesses. Driving style, encompassing violations, errors, and lapses, and driving skills, including perceptual motor skills and safety skills, are the two main components of the human factor in driving. Training sessions may be conducted based on the proposed scoring system using machine learning that can help improve drivers' self-awareness and reduce the risk of accidents.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Martinussen LM, Møller M, Prato CG (nd) 6th road safety on four continents conference driver style and driver skill-clustering sub-groups of drivers differing in their potential danger in traffic Martinussen LM, Møller M, Prato CG (nd) 6th road safety on four continents conference driver style and driver skill-clustering sub-groups of drivers differing in their potential danger in traffic
Zurück zum Zitat Moharrer M (2011) Actual skill vs. perceived skill; A new method for assessing overconfidence among drivers Moharrer M (2011) Actual skill vs. perceived skill; A new method for assessing overconfidence among drivers
Metadaten
Titel
Driver Skill Profiling Using Machine Learning
verfasst von
Nadeem Akhtar
Mithun Mohan
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1503-9_8