Skip to main content
Erschienen in:

13.09.2022

Driving Assistance: Pedestrians and Bicycles Accident Risk Estimation using Onboard Front Camera

verfasst von: Stephen Karungaru, Ryosuke Tsuji, Kenji Terada

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, we propose a collision detection system by detecting and estimating the risk posed by pedestrians and bicycles in the images captured by a monocular onboard camera. In the proposed intrusion system, after initial detection, the pedestrians and bicycles are tracked to obtain their location, the direction of movement, and posture information using lane detection information, velocity calculation and, pose estimation respectively. Finally, this information is evaluated using fuzzy rules to estimate the risk the pedestrian and/or bicycle poses. The results are transmitted to the driver using voice and sound. We tested the system using 89 video scenes and achieved recall and precision accuracies of 0.94 and 0.87 respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
2.
Zurück zum Zitat Papageorgiou, C., Poggio, T.: A trainable pedestrian detection system. Int. J. Comput. Vis. (IJCV) 1, 15–33 (2000) Papageorgiou, C., Poggio,  T.: A trainable pedestrian detection system. Int. J. Comput. Vis. (IJCV) 1, 15–33 (2000)
3.
Zurück zum Zitat Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 1, 886–893 (2005) Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR), 1, 886–893 (2005)
4.
Zurück zum Zitat Solichin, A., Harjoko, A., Agfianto E.P.: A survey of Pedestrian Detection in video. Int. J. Adv. Sci. Appl. (IJACSAI) 5(10), 41–47 (2014) Solichin, A., Harjoko, A., Agfianto E.P.: A survey of Pedestrian Detection in video. Int. J. Adv. Sci. Appl. (IJACSAI) 5(10), 41–47 (2014)
5.
Zurück zum Zitat Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by Bayesian Combination of Edgelet Part Detectors. IEEE Int. Conf. Comput. Vis. (ICCV) 1, 90–97 (2005) Wu, B., Nevatia, R.: Detection of multiple, partially occluded humans in a single image by Bayesian Combination of Edgelet Part Detectors. IEEE Int. Conf. Comput. Vis. (ICCV) 1, 90–97 (2005)
6.
Zurück zum Zitat Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. The European Conference on Computer Vision (ECCV), 3021(2004), 69–82 (2005)MATH Mikolajczyk, K., Schmid, C., Zisserman, A.: Human detection based on a probabilistic assembly of robust part detectors. The European Conference on Computer Vision (ECCV), 3021(2004), 69–82 (2005)MATH
7.
Zurück zum Zitat Piérard, S., Lejeune, A., Droogenbroeck, M.V.: A probabilistic pixel-based approach to detect humans in video streams. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) 921–924 (2011) Piérard, S., Lejeune, A., Droogenbroeck, M.V.: A probabilistic pixel-based approach to detect humans in video streams. IEEE Int. Conf. Acoust. Speech Signal Process. (ICASSP) 921–924 (2011)
8.
Zurück zum Zitat Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008)CrossRef Fleuret, F., Berclaz, J., Lengagne, R., Fua, P.: Multi-camera people tracking with a probabilistic occupancy map. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 267–282 (2008)CrossRef
9.
Zurück zum Zitat Girshick, R., Donahue, J., Darrell, T. et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587, Columbus, OH, USA (2014) Girshick, R., Donahue, J., Darrell, T. et al.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587, Columbus, OH, USA (2014)
10.
Zurück zum Zitat He, K., Gkioxari, G., Dollar, P., et al.: Mask r-cnn. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. Long Beach, CA, USA (2017) He, K., Gkioxari, G., Dollar, P., et al.: Mask r-cnn. In: Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988. Long Beach, CA, USA (2017)
11.
Zurück zum Zitat Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448, Barcelona, Spain (2015) Girshick, R.: Fast r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448, Barcelona, Spain (2015)
12.
Zurück zum Zitat Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 39(6), 91–99 (2015) Ren, S., He, K., Girshick, R., et al.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural. Inf. Process. Syst. 39(6), 91–99 (2015)
13.
Zurück zum Zitat Redmon, J., Divvala, S., Girshick, R. et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788, Las Vegas, NV, USA (2016) Redmon, J., Divvala, S., Girshick, R. et al.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788, Las Vegas, NV, USA (2016)
14.
Zurück zum Zitat Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA (2017) Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of 30th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA (2017)
16.
Zurück zum Zitat Liu, W., Anguelov, D., Erhan, D. et al.: Ssd: single shot multibox detector. In: Proceedings of the European Conference on Computer Vision, pp. 21–37. Springer (2016) Liu, W., Anguelov, D., Erhan, D. et al.: Ssd: single shot multibox detector. In: Proceedings of the European Conference on Computer Vision, pp. 21–37. Springer (2016)
17.
Zurück zum Zitat Liu, W., Liao, S., Hu, W., et al.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Proceedings Of the European Conference on Computer Vision, pp. 643–659, Munich, Germany (2018) Liu, W., Liao, S., Hu, W., et al.: Learning efficient single-stage pedestrian detectors by asymptotic localization fitting. In: Proceedings Of the European Conference on Computer Vision, pp. 643–659, Munich, Germany (2018)
20.
Zurück zum Zitat Tian, D., Han, Y., Wang, B., Guan, T., Wei, W.: A review of intelligent driving pedestrian detection based on deep learning. Comput. Intell. Neurosci. 1–16 (2021) Tian, D., Han, Y., Wang, B., Guan, T., Wei, W.: A review of intelligent driving pedestrian detection based on deep learning. Comput. Intell. Neurosci. 1–16 (2021)
22.
Zurück zum Zitat Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE Computer Vision and Pattern Recognition (CVPR). 2002–2011 (2018) Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE Computer Vision and Pattern Recognition (CVPR). 2002–2011 (2018)
23.
Zurück zum Zitat Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: International Conference on Computer Vision and Pattern Recognition (CVPR). 270–279 (2017) Godard, C., Mac Aodha, O., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: International Conference on Computer Vision and Pattern Recognition (CVPR). 270–279 (2017)
24.
Zurück zum Zitat Zaheer, A., Rashid, M., Riaz, M.A., Khan, S.: Single-View Reconstruction using orthogonal line-pairs. Comput. Vis. Image Underst. 172, 107–123 (2018)CrossRef Zaheer, A., Rashid, M., Riaz, M.A., Khan, S.: Single-View Reconstruction using orthogonal line-pairs. Comput. Vis. Image Underst. 172, 107–123 (2018)CrossRef
25.
26.
Zurück zum Zitat Simonyan, K., Zisserman, A.: Very deep convolutional Networks for Large-Scale Image Recognition. CVPR, arXiv:1409.1556 (2014) Simonyan, K., Zisserman, A.: Very deep convolutional Networks for Large-Scale Image Recognition. CVPR, arXiv:1409.1556 (2014)
27.
Zurück zum Zitat Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: Realtime Multi-Person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021) Cao, Z., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: Realtime Multi-Person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021)
Metadaten
Titel
Driving Assistance: Pedestrians and Bicycles Accident Risk Estimation using Onboard Front Camera
verfasst von
Stephen Karungaru
Ryosuke Tsuji
Kenji Terada
Publikationsdatum
13.09.2022
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 3/2022
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-022-00324-2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.