Skip to main content

2016 | OriginalPaper | Buchkapitel

15. Drug-Eluting Nanotubes for Cellular Bioactivity

verfasst von : Sweetu Patel, Azhang Hamlekhan, Tolou Shokuhfar

Erschienen in: Microscale Technologies for Cell Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Titanium nanotubes has been known for its multifunctional properties and its benefits have been further investigated in the field of biomedical implantations. The mechanism behind the cellular interaction with the nanotubes possessing different diameter has been reported in this chapter. High surface area and surface energy of these nanotubes make it a hydrophilic surface, which enhances the protein adsorption on the surface facilitating the adhesion of the cells to the substrate. Additionally, these nanotubes possess nano-topographical features that provide biomechanical cues for the cells to spread on the surface thereby triggering various intracellular reactions inside the cells allowing their differentiation and proliferation on the surface. Different diameter of the nanotubes allow protein adsorption with respective spacing and depending on the cellular interaction with those proteins, cells either proliferate or differentiate. Its drug reserving capability makes it a suitable surface for implants, which can provide efficient amount of drug to be delivered at the site of interest. The drug can be loaded based on the patients need and it can include, bone morphogenic protein, anti-inflammatory drug, or anti-infection drug etc. Additionally, slow and controlled release of drug from the polymer-encapsulated drug has been the current area of research, which supplies the drug in regular interval, has also been discussed in his chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tan AW et al (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38(6):4421–4435CrossRef Tan AW et al (2012) Review of titania nanotubes: fabrication and cellular response. Ceram Int 38(6):4421–4435CrossRef
2.
Zurück zum Zitat Swami N, Cui Z, Nair LS (2010) Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Transf 133(3):034002CrossRef Swami N, Cui Z, Nair LS (2010) Titania nanotubes: novel nanostructures for improved osseointegration. J Heat Transf 133(3):034002CrossRef
3.
Zurück zum Zitat Nikkhah M et al (2012) Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33(21):5230–5246CrossRef Nikkhah M et al (2012) Engineering microscale topographies to control the cell–substrate interface. Biomaterials 33(21):5230–5246CrossRef
4.
Zurück zum Zitat Lumetti S et al (2014) RhoA controls Wnt upregulation on microstructured titanium surfaces. Biomed Res Int 2014:9 Lumetti S et al (2014) RhoA controls Wnt upregulation on microstructured titanium surfaces. Biomed Res Int 2014:9
5.
Zurück zum Zitat Brammer KS et al (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5(8):3215–3223CrossRef Brammer KS et al (2009) Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface. Acta Biomater 5(8):3215–3223CrossRef
6.
Zurück zum Zitat Tomsia AP et al (2011) Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 26(Suppl):25–49 Tomsia AP et al (2011) Nanotechnology approaches for better dental implants. Int J Oral Maxillofac Implants 26(Suppl):25–49
7.
Zurück zum Zitat Wiskott HWA, Belser UC (1999) Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 10(6):429–444CrossRef Wiskott HWA, Belser UC (1999) Lack of integration of smooth titanium surfaces: a working hypothesis based on strains generated in the surrounding bone. Clin Oral Implants Res 10(6):429–444CrossRef
8.
Zurück zum Zitat Hadi S et al (2011) Biological factors responsible for failure of osseointegration in oral implants. Biol Med 3(2):164–170MathSciNet Hadi S et al (2011) Biological factors responsible for failure of osseointegration in oral implants. Biol Med 3(2):164–170MathSciNet
9.
Zurück zum Zitat Pittrof A et al (2012) ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. Acta Biomater 8(7):2639–2647CrossRef Pittrof A et al (2012) ECM spreading behaviour on micropatterned TiO2 nanotube surfaces. Acta Biomater 8(7):2639–2647CrossRef
10.
Zurück zum Zitat Oh S, Jin S (2006) Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 26(8):1301–1306CrossRef Oh S, Jin S (2006) Titanium oxide nanotubes with controlled morphology for enhanced bone growth. Mater Sci Eng C 26(8):1301–1306CrossRef
11.
Zurück zum Zitat Shokuhfar T et al (2014) Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry. Int J Nanomedicine 9:3737–3748 Shokuhfar T et al (2014) Biophysical evaluation of cells on nanotubular surfaces: the effects of atomic ordering and chemistry. Int J Nanomedicine 9:3737–3748
12.
Zurück zum Zitat Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):11 Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9(2):11
13.
Zurück zum Zitat Popat KC et al (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197CrossRef Popat KC et al (2007) Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials 28(21):3188–3197CrossRef
14.
Zurück zum Zitat Wang N et al (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911CrossRef Wang N et al (2011) Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs. Biomaterials 32(29):6900–6911CrossRef
15.
Zurück zum Zitat Ogawa T, Sukotjo C, Nishimura I (2002) Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J Prosthodont 11(4):241–247CrossRef Ogawa T, Sukotjo C, Nishimura I (2002) Modulated bone matrix-related gene expression is associated with differences in interfacial strength of different implant surface roughness. J Prosthodont 11(4):241–247CrossRef
16.
Zurück zum Zitat MacDonald DE et al (2004) Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25(16):3135–3146CrossRef MacDonald DE et al (2004) Thermal and chemical modification of titanium–aluminum–vanadium implant materials: effects on surface properties, glycoprotein adsorption, and MG63 cell attachment. Biomaterials 25(16):3135–3146CrossRef
17.
Zurück zum Zitat Boyan BD et al (2001) Mechanisms involved in osteoblast response to implant surface morphology. Annu Rev Mater Res 31(1):357–371CrossRef Boyan BD et al (2001) Mechanisms involved in osteoblast response to implant surface morphology. Annu Rev Mater Res 31(1):357–371CrossRef
18.
Zurück zum Zitat de Oliveira PT et al (2007) Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A 80A(3):554–564CrossRef de Oliveira PT et al (2007) Enhancement of in vitro osteogenesis on titanium by chemically produced nanotopography. J Biomed Mater Res A 80A(3):554–564CrossRef
19.
Zurück zum Zitat Joos U, Meyer U (2006) New paradigm in implant osseointegration. Head Face Med 2(1):19CrossRef Joos U, Meyer U (2006) New paradigm in implant osseointegration. Head Face Med 2(1):19CrossRef
20.
Zurück zum Zitat Czarnowska E, Wierzchoń T, Maranda-Niedbała A (1999) Properties of the surface layers on titanium alloy and their biocompatibility in in vitro tests. J Mater Process Technol 92–93:190–194CrossRef Czarnowska E, Wierzchoń T, Maranda-Niedbała A (1999) Properties of the surface layers on titanium alloy and their biocompatibility in in vitro tests. J Mater Process Technol 92–93:190–194CrossRef
21.
Zurück zum Zitat Ponsonnet L et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef Ponsonnet L et al (2003) Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater Sci Eng C 23(4):551–560CrossRef
22.
Zurück zum Zitat Feng B et al (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24(25):4663–4670CrossRef Feng B et al (2003) Characterization of surface oxide films on titanium and adhesion of osteoblast. Biomaterials 24(25):4663–4670CrossRef
23.
Zurück zum Zitat Khan MR et al (2012) The enhanced modulation of key bone matrix components by modified titanium implant surfaces. Bone 50(1):1–8CrossRef Khan MR et al (2012) The enhanced modulation of key bone matrix components by modified titanium implant surfaces. Bone 50(1):1–8CrossRef
24.
Zurück zum Zitat Velten D et al (2002) Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mater Res 59(1):18–28CrossRef Velten D et al (2002) Preparation of TiO2 layers on cp-Ti and Ti6Al4V by thermal and anodic oxidation and by sol-gel coating techniques and their characterization. J Biomed Mater Res 59(1):18–28CrossRef
25.
Zurück zum Zitat Takeuchi K et al (2005) Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 72A(3):296–305CrossRef Takeuchi K et al (2005) Enhanced intrinsic biomechanical properties of osteoblastic mineralized tissue on roughened titanium surface. J Biomed Mater Res A 72A(3):296–305CrossRef
26.
Zurück zum Zitat Das K, Bose S, Bandyopadhyay A (2009) TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell–materials interaction. J Biomed Mater Res A 90A(1):225–237CrossRef Das K, Bose S, Bandyopadhyay A (2009) TiO2 nanotubes on Ti: influence of nanoscale morphology on bone cell–materials interaction. J Biomed Mater Res A 90A(1):225–237CrossRef
27.
Zurück zum Zitat Meor Yusoff MS, Masliana MM, Paulus W, Devi P, Mahdi ME (2011) Fabrication of titania nanotubes by a modified hydrothermal method. J Sci Technol 2:10 Meor Yusoff MS, Masliana MM, Paulus W, Devi P, Mahdi ME (2011) Fabrication of titania nanotubes by a modified hydrothermal method. J Sci Technol 2:10
28.
Zurück zum Zitat Oh S et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78A(1):97–103CrossRef Oh S et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res A 78A(1):97–103CrossRef
29.
Zurück zum Zitat Balasundaram G, Yao C, Webster TJ (2008) TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 84A(2):447–453CrossRef Balasundaram G, Yao C, Webster TJ (2008) TiO2 nanotubes functionalized with regions of bone morphogenetic protein-2 increases osteoblast adhesion. J Biomed Mater Res A 84A(2):447–453CrossRef
30.
Zurück zum Zitat Shokuhfar T et al (2009) Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10):3098–3102CrossRef Shokuhfar T et al (2009) Direct compressive measurements of individual titanium dioxide nanotubes. ACS Nano 3(10):3098–3102CrossRef
31.
Zurück zum Zitat Park J et al (2012) Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small 8(1):98–107CrossRef Park J et al (2012) Synergistic control of mesenchymal stem cell differentiation by nanoscale surface geometry and immobilized growth factors on TiO2 nanotubes. Small 8(1):98–107CrossRef
32.
Zurück zum Zitat Popat KC et al (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3(11):1878–1881CrossRef Popat KC et al (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3(11):1878–1881CrossRef
33.
Zurück zum Zitat Shokuhfar T et al (2013) Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv 3(38):17380–17386CrossRef Shokuhfar T et al (2013) Intercalation of anti-inflammatory drug molecules within TiO2 nanotubes. RSC Adv 3(38):17380–17386CrossRef
34.
Zurück zum Zitat Aw MS, Khalid KA, Gulati K, Atkins GJ, Pivonka P, Findlay DM, Losic D (2012) Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Int J Nanomedicine 7:10 Aw MS, Khalid KA, Gulati K, Atkins GJ, Pivonka P, Findlay DM, Losic D (2012) Characterization of drug-release kinetics in trabecular bone from titania nanotube implants. Int J Nanomedicine 7:10
35.
Zurück zum Zitat Rupp F et al (2004) Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25(7–8):1429–1438CrossRef Rupp F et al (2004) Roughness induced dynamic changes of wettability of acid etched titanium implant modifications. Biomaterials 25(7–8):1429–1438CrossRef
36.
Zurück zum Zitat Divya Rani VV et al (2012) Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomater 8(5):1976–1989CrossRef Divya Rani VV et al (2012) Osteointegration of titanium implant is sensitive to specific nanostructure morphology. Acta Biomater 8(5):1976–1989CrossRef
37.
Zurück zum Zitat Hamlekhan A, Takoudis C, Sukotjo C, Mathew MT, Virdi A, Shahbazian-Yassar R, Shokuhfar T (2014) Recent progress toward surface modification of bone/dental implants with titanium and zirconia dioxide nanotubes. J Nanotechnol Smart Mater 1(301):14 Hamlekhan A, Takoudis C, Sukotjo C, Mathew MT, Virdi A, Shahbazian-Yassar R, Shokuhfar T (2014) Recent progress toward surface modification of bone/dental implants with titanium and zirconia dioxide nanotubes. J Nanotechnol Smart Mater 1(301):14
38.
Zurück zum Zitat Oh S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 106(7):2130–2135CrossRef Oh S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci U S A 106(7):2130–2135CrossRef
39.
Zurück zum Zitat Park J et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691CrossRef Park J et al (2007) Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano Lett 7(6):1686–1691CrossRef
40.
Zurück zum Zitat Neve A, Corrado A, Cantatore FP (2010) Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 343(2):289–302CrossRef Neve A, Corrado A, Cantatore FP (2010) Osteoblast physiology in normal and pathological conditions. Cell Tissue Res 343(2):289–302CrossRef
41.
Zurück zum Zitat Pakhlov E et al (2000) Study of water, methanol and isopropanol adsorption on the surface of titanosilicas of different structure. J Therm Anal Calorim 62(2):395–399CrossRef Pakhlov E et al (2000) Study of water, methanol and isopropanol adsorption on the surface of titanosilicas of different structure. J Therm Anal Calorim 62(2):395–399CrossRef
42.
Zurück zum Zitat Kasuga T, Kondo H, Nogami M (2002) Apatite formation on TiO2 in simulated body fluid. J Cryst Growth 235(1–4):235–240CrossRef Kasuga T, Kondo H, Nogami M (2002) Apatite formation on TiO2 in simulated body fluid. J Cryst Growth 235(1–4):235–240CrossRef
43.
Zurück zum Zitat Miyauchi M et al (2002) Reversible wettability control of TiO2 surface by light irradiation. Surf Sci 511(1–3):401–407CrossRef Miyauchi M et al (2002) Reversible wettability control of TiO2 surface by light irradiation. Surf Sci 511(1–3):401–407CrossRef
44.
Zurück zum Zitat Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19(5–6):333–345CrossRef Wang KX, Denhardt DT (2008) Osteopontin: role in immune regulation and stress responses. Cytokine Growth Factor Rev 19(5–6):333–345CrossRef
45.
Zurück zum Zitat Bueno Rde B et al (2011) Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin. Braz Dent J 22:179–184 Bueno Rde B et al (2011) Oxidative nanopatterning of titanium surfaces promotes production and extracellular accumulation of osteopontin. Braz Dent J 22:179–184
46.
Zurück zum Zitat Park J et al (2009) TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671CrossRef Park J et al (2009) TiO2 nanotube surfaces: 15 nm—an optimal length scale of surface topography for cell adhesion and differentiation. Small 5(6):666–671CrossRef
47.
Zurück zum Zitat Lai M et al (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 12(4):1097–1105CrossRef Lai M et al (2011) Surface functionalization of TiO2 nanotubes with bone morphogenetic protein 2 and its synergistic effect on the differentiation of mesenchymal stem cells. Biomacromolecules 12(4):1097–1105CrossRef
48.
Zurück zum Zitat Bauer S et al (2009) Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integr Biol 1(8–9):525–532CrossRef Bauer S et al (2009) Size selective behavior of mesenchymal stem cells on ZrO2 and TiO2 nanotube arrays. Integr Biol 1(8–9):525–532CrossRef
49.
Zurück zum Zitat Kodama A et al (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5(6):2322–2330CrossRef Kodama A et al (2009) Bioactivation of titanium surfaces using coatings of TiO2 nanotubes rapidly pre-loaded with synthetic hydroxyapatite. Acta Biomater 5(6):2322–2330CrossRef
50.
Zurück zum Zitat Popat KC et al (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28(32):4880–4888CrossRef Popat KC et al (2007) Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials 28(32):4880–4888CrossRef
51.
Zurück zum Zitat Song Y-Y et al (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131(12):4230–4232CrossRef Song Y-Y et al (2009) Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system. J Am Chem Soc 131(12):4230–4232CrossRef
52.
Zurück zum Zitat Yao C, Webster TJ (2009) Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 91(2):587–595CrossRef Yao C, Webster TJ (2009) Prolonged antibiotic delivery from anodized nanotubular titanium using a co-precipitation drug loading method. J Biomed Mater Res B Appl Biomater 91(2):587–595CrossRef
53.
Zurück zum Zitat Çalışkan N, Bayram C, Erdal E, Karahaliloğlu Z, Denkbaş EB (2014) Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C 35:100CrossRef Çalışkan N, Bayram C, Erdal E, Karahaliloğlu Z, Denkbaş EB (2014) Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Mater Sci Eng C 35:100CrossRef
54.
Zurück zum Zitat Ma M et al (2012) Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A 100A(2):278–285CrossRef Ma M et al (2012) Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J Biomed Mater Res A 100A(2):278–285CrossRef
55.
Zurück zum Zitat Hu Y et al (2012) TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 8(1):439–448CrossRef Hu Y et al (2012) TiO2 nanotubes as drug nanoreservoirs for the regulation of mobility and differentiation of mesenchymal stem cells. Acta Biomater 8(1):439–448CrossRef
56.
Zurück zum Zitat Vasilev K et al (2010) Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 31(3):532–540CrossRef Vasilev K et al (2010) Tailoring the surface functionalities of titania nanotube arrays. Biomaterials 31(3):532–540CrossRef
57.
Zurück zum Zitat Gulati K, Aw MS, Losic D (2011) Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett 6:571–572CrossRef Gulati K, Aw MS, Losic D (2011) Drug-eluting Ti wires with titania nanotube arrays for bone fixation and reduced bone infection. Nanoscale Res Lett 6:571–572CrossRef
58.
Zurück zum Zitat Gulati K et al (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8(1):449–456CrossRef Gulati K et al (2012) Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater 8(1):449–456CrossRef
59.
Zurück zum Zitat Kazemzadeh-Narbat M et al (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34(24):5969–5977CrossRef Kazemzadeh-Narbat M et al (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34(24):5969–5977CrossRef
60.
Zurück zum Zitat Aw MS, Losic D (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. Int J Pharm 443(1–2):154–162CrossRef Aw MS, Losic D (2013) Ultrasound enhanced release of therapeutics from drug-releasing implants based on titania nanotube arrays. Int J Pharm 443(1–2):154–162CrossRef
Metadaten
Titel
Drug-Eluting Nanotubes for Cellular Bioactivity
verfasst von
Sweetu Patel
Azhang Hamlekhan
Tolou Shokuhfar
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-20726-1_15

Neuer Inhalt