Skip to main content
Erschienen in: Cellulose 18/2020

24.07.2020 | Review

Drying and redispersion of plant cellulose nanofibers for industrial applications: a review

verfasst von: P. Posada, J. Velásquez-Cock, C. Gómez-Hoyos, A. M. Serpa Guerra, S. V. Lyulin, J. M. Kenny, P. Gañán, C. Castro, R. Zuluaga

Erschienen in: Cellulose | Ausgabe 18/2020

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The broad range of applications of cellulose (CNFs) nanofibers derived from plant sources has promoted different strategies for their production and commercialization. Nevertheless, issues concerning its transportation have prompted different projects to achieve a redispersible and dehydrated product in order to allow a cost-effective and safe transport and processing of this material. In this work, different strategies to avoid hornification such as oven drying, freeze-drying, spray-drying and supercritical drying were reviewed in terms of the nanostructural properties and redispersion capability of the obtained product, analyzing the existent literature involving chemical modification of cellulose or additives. Oven drying was reported to have the highest agglomeration rate during dehydration and some of the redispersible products can be used in food and pharmaceutical products, while the structure of freeze-dried CNFs evidenced several morphologies depending on CNF concentration and the presence of charges or steric hindrances. Spray-drying and supercritical drying were the only methods that could not fulfil the aimed industrial requirements due to its agglomeration and cost-efficiency respectively. When considering strategies to keep nanostructural properties upon dehydration it is important to account for the final application of CNFs as some additives or chemical modifications are targeted to specific applications. Further research is still required to clarify if spray drying and supercritical drying are suitable for this nanomaterial, as different additives and drying parameters must be considered to adapt these techniques to industrial requirements

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Annandarajah C, Langhorst A, Kiziltas A, Grewell D, Mielewski D, Montazami R (2019) Hybrid cellulose-glass fiber composites for automotive applications. Materials 12(19):3189CrossRef Annandarajah C, Langhorst A, Kiziltas A, Grewell D, Mielewski D, Montazami R (2019) Hybrid cellulose-glass fiber composites for automotive applications. Materials 12(19):3189CrossRef
Zurück zum Zitat Ardanuy Raso M, Claramunt Blanes J, Arévalo Peces R, Parés Sabatés F, Aracri E, Vidal Lluciá T (2012) Nanofibrillated Cellulose (NFC) as a potential reinforcement for high performance cement mortar composites. BioResources 7:3883–3894 Ardanuy Raso M, Claramunt Blanes J, Arévalo Peces R, Parés Sabatés F, Aracri E, Vidal Lluciá T (2012) Nanofibrillated Cellulose (NFC) as a potential reinforcement for high performance cement mortar composites. BioResources 7:3883–3894
Zurück zum Zitat Bayvel L, Orzechowski Z (1993) Liquid atomization. CRC Press, Boca Raton, p 475 Bayvel L, Orzechowski Z (1993) Liquid atomization. CRC Press, Boca Raton, p 475
Zurück zum Zitat Cowie J, TED Bilek EM, Wegner TH, Shatkin JOA (2014) Market projections of cellulose nanomaterial-enabled products—Part 2: volume estimates. Tappi J 13:57–69CrossRef Cowie J, TED Bilek EM, Wegner TH, Shatkin JOA (2014) Market projections of cellulose nanomaterial-enabled products—Part 2: volume estimates. Tappi J 13:57–69CrossRef
Zurück zum Zitat Crotogino R (2012) The economic impact of nanocellulose. In: International symposium on assessing the economic impact of nanotechnology, Washington DC, pp 1–42 Crotogino R (2012) The economic impact of nanocellulose. In: International symposium on assessing the economic impact of nanotechnology, Washington DC, pp 1–42
Zurück zum Zitat Fairman E (2014) Avoiding aggregation during the drying and rehydration phases of nanocellulose production. Bachelor thesis. University of Maine, Orono, Maine Fairman E (2014) Avoiding aggregation during the drying and rehydration phases of nanocellulose production. Bachelor thesis. University of Maine, Orono, Maine
Zurück zum Zitat Hakeem KR, Jawaid M, Rashid U (2003) Biomass and bio-energy. Springer, Cham, p 400 Hakeem KR, Jawaid M, Rashid U (2003) Biomass and bio-energy. Springer, Cham, p 400
Zurück zum Zitat Hamada H, Tahara K, Uchida A (2012) The effects of nano-fibrillated cellulose as a coating agent for screen printing. In: 12th TAPPI advanced coating fundamentals symposium proceedings, Co-located with the 16th international coating science and technology symposium, ISCST 2012 Hamada H, Tahara K, Uchida A (2012) The effects of nano-fibrillated cellulose as a coating agent for screen printing. In: 12th TAPPI advanced coating fundamentals symposium proceedings, Co-located with the 16th international coating science and technology symposium, ISCST 2012
Zurück zum Zitat Kiziltas A, Kiziltas EE, Boran S, Gardner DJ (2013) Micro- and nanocellulose composites for automotive applications. In: 13th annual SPE automotive composites conference and exhibition, Society of plastics engineers, pp 1–13 Kiziltas A, Kiziltas EE, Boran S, Gardner DJ (2013) Micro- and nanocellulose composites for automotive applications. In: 13th annual SPE automotive composites conference and exhibition, Society of plastics engineers, pp 1–13
Zurück zum Zitat Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRef
Zurück zum Zitat Moser C, Henriksson G (2018) Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nord Pulp Pap Res J 33:647–650CrossRef Moser C, Henriksson G (2018) Improved dispersibility of once-dried cellulose nanofibers in the presence of glycerol. Nord Pulp Pap Res J 33:647–650CrossRef
Zurück zum Zitat Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper [review]. Tappi J 77:171–179 Nazhad MM, Paszner L (1994) Fundamentals of strength loss in recycled paper [review]. Tappi J 77:171–179
Zurück zum Zitat Oetjen G, Haseley P (2004) Freeze-drying, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany Oetjen G, Haseley P (2004) Freeze-drying, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941CrossRef
Zurück zum Zitat Preisler DJ, Heikkila CA, Mitchell SA, Schmelzer JP (2016) U.S. Patent No. 9,511,690. Washington, DC: U.S. Patent and Trademark Office Preisler DJ, Heikkila CA, Mitchell SA, Schmelzer JP (2016) U.S. Patent No. 9,511,690. Washington, DC: U.S. Patent and Trademark Office
Zurück zum Zitat Shatkin JOA, Wegner TH, Bilek EMTED (2014) Market projections of cellulose nanomaterial-enabled products—Part 1: applications. Tappi J 13:9–16CrossRef Shatkin JOA, Wegner TH, Bilek EMTED (2014) Market projections of cellulose nanomaterial-enabled products—Part 1: applications. Tappi J 13:9–16CrossRef
Zurück zum Zitat Wang X, Maloney TC, Paulapuro H (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita J 56:455–459 Wang X, Maloney TC, Paulapuro H (2003) Internal fibrillation in never-dried and once-dried chemical pulps. Appita J 56:455–459
Metadaten
Titel
Drying and redispersion of plant cellulose nanofibers for industrial applications: a review
verfasst von
P. Posada
J. Velásquez-Cock
C. Gómez-Hoyos
A. M. Serpa Guerra
S. V. Lyulin
J. M. Kenny
P. Gañán
C. Castro
R. Zuluaga
Publikationsdatum
24.07.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 18/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03348-7

Weitere Artikel der Ausgabe 18/2020

Cellulose 18/2020 Zur Ausgabe