Skip to main content

2020 | OriginalPaper | Buchkapitel

DSR: A Collection for the Evaluation of Graded Disease-Symptom Relations

verfasst von : Markus Zlabinger, Sebastian Hofstätter, Navid Rekabsaz, Allan Hanbury

Erschienen in: Advances in Information Retrieval

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effective extraction of ranked disease-symptom relationships is a critical component in various medical tasks, including computer-assisted medical diagnosis or the discovery of unexpected associations between diseases. While existing disease-symptom relationship extraction methods are used as the foundation in the various medical tasks, no collection is available to systematically evaluate the performance of such methods. In this paper, we introduce the Disease-Symptom Relation Collection (dsr-collection), created by five physicians as expert annotators. We provide graded symptom judgments for diseases by differentiating between relevant symptoms and primary symptoms. Further, we provide several strong baselines, based on the methods used in previous studies. The first method is based on word embeddings, and the second on co-occurrences of MeSH-keywords of medical articles. For the co-occurrence method, we propose an adaption in which not only keywords are considered, but also the full text of medical articles. The evaluation on the dsr-collection shows the effectiveness of the proposed adaption in terms of nDCG, precision, and recall.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
MeSH-keywords are meta-data that indicates the core topics of an medical article.
 
2
Contact this paper’s first author to gain access.
 
3
The website netdoktor.at which is certificated by the Health on the Net Foundation.
 
4
Symptom for acute abdominal pain.
 
5
A dental disease where the gum that surrounds the teeth retreats.
 
Literatur
1.
Zurück zum Zitat Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the American Medical Informatics Association Symposium, pp. 17–21 (2001) Aronson, A.R.: Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. In: Proceedings of the American Medical Informatics Association Symposium, pp. 17–21 (2001)
2.
Zurück zum Zitat Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)CrossRef Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76(5), 378 (1971)CrossRef
3.
Zurück zum Zitat Hassan, M., Makkaoui, O., Coulet, A., Toussain, Y.: Extracting disease-symptom relationships by learning syntactic patterns from dependency graphs. In: Proceedings of BioNLP 2015, pp. 71–80. Association for Computational Linguistics, Beijing (2015) Hassan, M., Makkaoui, O., Coulet, A., Toussain, Y.: Extracting disease-symptom relationships by learning syntactic patterns from dependency graphs. In: Proceedings of BioNLP 2015, pp. 71–80. Association for Computational Linguistics, Beijing (2015)
4.
Zurück zum Zitat Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)CrossRef Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)CrossRef
5.
Zurück zum Zitat Kekäläinen, J.: Binary and graded relevance in IR evaluations - comparison of the effects on ranking of IR systems. Inf. Process. Manag. 41(5), 1019–1033 (2005)CrossRef Kekäläinen, J.: Binary and graded relevance in IR evaluations - comparison of the effects on ranking of IR systems. Inf. Process. Manag. 41(5), 1019–1033 (2005)CrossRef
6.
Zurück zum Zitat Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977) Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. Biometrics 33, 159–174 (1977)
7.
Zurück zum Zitat Martin, L., Battistelli, D., Charnois, T.: Symptom extraction issue. In: Proceedings of BioNLP 2014, pp. 107–111 (2014). Association for Computational Linguistics, Baltimore (2014) Martin, L., Battistelli, D., Charnois, T.: Symptom extraction issue. In: Proceedings of BioNLP 2014, pp. 107–111 (2014). Association for Computational Linguistics, Baltimore (2014)
8.
Zurück zum Zitat Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013) Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)
9.
Zurück zum Zitat Ni, J., Fei, H., Fan, W., Zhang, X.: Automated medical diagnosis by ranking clusters across the symptom-disease network. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1009–1014, November 2017 Ni, J., Fei, H., Fan, W., Zhang, X.: Automated medical diagnosis by ranking clusters across the symptom-disease network. In: 2017 IEEE International Conference on Data Mining (ICDM), pp. 1009–1014, November 2017
11.
Zurück zum Zitat Shen, Y., Li, Y., Zheng, H.T., Tang, B., Yang, M.: Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware Naïve Bayes classifier. BMC Bioinform. 20(1), 330 (2019)CrossRef Shen, Y., Li, Y., Zheng, H.T., Tang, B., Yang, M.: Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware Naïve Bayes classifier. BMC Bioinform. 20(1), 330 (2019)CrossRef
12.
Zurück zum Zitat del Valle, E.P.G., García, G.L., Santamaría, L.P., Zanin, M., Ruiz, E.M., González, A.R.: Evaluating Wikipedia as a source of information for disease understanding. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 399–404, June 2018 del Valle, E.P.G., García, G.L., Santamaría, L.P., Zanin, M., Ruiz, E.M., González, A.R.: Evaluating Wikipedia as a source of information for disease understanding. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 399–404, June 2018
13.
Zurück zum Zitat Xia, E., Sun, W., Mei, J., Xu, E., Wang, K., Qin, Y.: Mining disease-symptom relation from massive biomedical literature and its application in severe disease diagnosis. In: 45 - AMIA 2018 Annual Symposium, pp. 1118–1126 (2018) Xia, E., Sun, W., Mei, J., Xu, E., Wang, K., Qin, Y.: Mining disease-symptom relation from massive biomedical literature and its application in severe disease diagnosis. In: 45 - AMIA 2018 Annual Symposium, pp. 1118–1126 (2018)
14.
Zurück zum Zitat Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5(1), 1–10 (2014) Zhou, X., Menche, J., Barabási, A.L., Sharma, A.: Human symptoms-disease network. Nat. Commun. 5(1), 1–10 (2014)
Metadaten
Titel
DSR: A Collection for the Evaluation of Graded Disease-Symptom Relations
verfasst von
Markus Zlabinger
Sebastian Hofstätter
Navid Rekabsaz
Allan Hanbury
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-45442-5_54