Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.11.2020 | Original Article

Dual-attention network with multitask learning for multistep short-term speed prediction on expressways

Zeitschrift:
Neural Computing and Applications
Autoren:
Yanyun Tao, Guoqi Yue, Xiang Wang
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this study, a dual-attention network (DAN) with multitask learning is proposed to solve the short-term prediction problems of traffic speed. The proposed DAN includes a road-type attention module (RAM), which performs accurate short-term speed prediction using road-type attention scores, a low-speed attention module (LAM), which is trained on weighted samples and fits low speed, and a decision support module, which outputs either RAM or LAM by estimating the level of the predicted speed. DAN can improve the transfer in the feature and speed prediction task layers by learning-associated and time-dependent tasks. The Shanghai expressway dataset is used to test and compare the proposed method and 15 other techniques. The results show that DAN with a multitask loss function obtains the smallest mean squared error (MSE) and mean absolute percentage error (MAPE) in most cases. LAM efficiently improves the predictive accuracy of low-speed samples, whereas RAM performs better in terms of the overall error reduction. DAN achieves the largest R-squared of 0.93 with a small reduction in R-squared by 0.12% from the training data to the test data, thereby illustrating its excellent generalization. DAN outperforms the other models by at least 13.5% in terms of the MSE and by 5.07% in terms of the MAPE on different road types. Adding LAM effectively improves the MAPE by at least 21.4% over RAM without increasing the error of the other speed levels. In terms of the MSE, RAM outperforms DAN by 12.6% in the best case. This study proved that the short-term speed prediction based on DAN has the ability to improve the accuracy on low-speed level and the generalization on different road types.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise