Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

Dual Contrastive Learning for Anomaly Detection in Attributed Networks

verfasst von : Shijie Xue, He Kong, Qi Wang

Erschienen in: Intelligent Information Processing XII

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Anomaly detection in attributed networks has been crucial in many critical domains and has gained significant attention in recent years. However, most existing methods fail to capture the complexity of anomalous patterns at different levels with suitable supervision signals. To address this issue, we propose a novel dual contrastive self-supervised learning method for attributed network anomaly detection. Specifically, our approach relies on two major components to determine the anomaly of nodes. The first component assesses self-consistency by determining whether a target node’s attributes are consistent with its contextual environment. The second component evaluates behavioral consistency by analyzing the relationships and interaction patterns between the target node and its one-hop neighbors, which determines if the behavior of these neighbors aligns with the expected pattern of the target node. Accordingly, our method designs two types of contrastive instance pairs to fully exploit the structural and attribute information for detecting anomalous nodes at different levels regarding two focused consistencies. This approach is more effective in detecting anomalies and mitigating the limitations of previous methods. We evaluated our method on six benchmark datasets, and the experimental results demonstrate the superiority of our methods against state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000) Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 93–104 (2000)
2.
Zurück zum Zitat Cheng, W., Zhang, K., Chen, H., Jiang, G., Chen, Z., Wang, W.: Ranking causal anomalies via temporal and dynamical analysis on vanishing correlations. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 805–814 (2016) Cheng, W., Zhang, K., Chen, H., Jiang, G., Chen, Z., Wang, W.: Ranking causal anomalies via temporal and dynamical analysis on vanishing correlations. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 805–814 (2016)
3.
Zurück zum Zitat Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., Zhu, E.: Improved autoencoder for unsupervised anomaly detection. Int. J. Intell. Syst. 36(12), 7103–7125 (2021)CrossRef Cheng, Z., Wang, S., Zhang, P., Wang, S., Liu, X., Zhu, E.: Improved autoencoder for unsupervised anomaly detection. Int. J. Intell. Syst. 36(12), 7103–7125 (2021)CrossRef
4.
Zurück zum Zitat Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019) Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: Proceedings of the 2019 SIAM International Conference on Data Mining, pp. 594–602. SIAM (2019)
5.
Zurück zum Zitat Ding, Q., Katenka, N., Barford, P., Kolaczyk, E., Crovella, M.: Intrusion as (anti) social communication: characterization and detection. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 886–894 (2012) Ding, Q., Katenka, N., Barford, P., Kolaczyk, E., Crovella, M.: Intrusion as (anti) social communication: characterization and detection. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 886–894 (2012)
6.
Zurück zum Zitat Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020) Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5685–5689. IEEE (2020)
7.
Zurück zum Zitat Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020) Hassani, K., Khasahmadi, A.H.: Contrastive multi-view representation learning on graphs. In: International Conference on Machine Learning, pp. 4116–4126. PMLR (2020)
8.
Zurück zum Zitat Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2020)CrossRef Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2020)CrossRef
9.
Zurück zum Zitat Jin, M., Liu, Y., Zheng, Y., Chi, L., Li, Y.F., Pan, S.: Anemone: graph anomaly detection with multi-scale contrastive learning. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3122–3126 (2021) Jin, M., Liu, Y., Zheng, Y., Chi, L., Li, Y.F., Pan, S.: Anemone: graph anomaly detection with multi-scale contrastive learning. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3122–3126 (2021)
10.
Zurück zum Zitat Jin, M., Zheng, Y., Li, Y.F., Gong, C., Zhou, C., Pan, S.: Multi-scale contrastive Siamese networks for self-supervised graph representation learning. arXiv preprint arXiv:2105.05682 (2021) Jin, M., Zheng, Y., Li, Y.F., Gong, C., Zhou, C., Pan, S.: Multi-scale contrastive Siamese networks for self-supervised graph representation learning. arXiv preprint arXiv:​2105.​05682 (2021)
11.
Zurück zum Zitat Li, J., Dani, H., Hu, X., Liu, H.: Radar: residual analysis for anomaly detection in attributed networks. In: IJCAI, pp. 2152–2158 (2017) Li, J., Dani, H., Hu, X., Liu, H.: Radar: residual analysis for anomaly detection in attributed networks. In: IJCAI, pp. 2152–2158 (2017)
12.
Zurück zum Zitat Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. 35, 857–876 (2021) Liu, X., et al.: Self-supervised learning: generative or contrastive. IEEE Trans. Knowl. Data Eng. 35, 857–876 (2021)
13.
Zurück zum Zitat Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 2378–2392 (2021)MathSciNetCrossRef Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. IEEE Trans. Neural Netw. Learn. Syst. 33, 2378–2392 (2021)MathSciNetCrossRef
14.
Zurück zum Zitat Pei, Y., Huang, T., van Ipenburg, W., Pechenizkiy, M.: ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 111(2), 519–541 (2022)MathSciNetCrossRef Pei, Y., Huang, T., van Ipenburg, W., Pechenizkiy, M.: ResGCN: attention-based deep residual modeling for anomaly detection on attributed networks. Mach. Learn. 111(2), 519–541 (2022)MathSciNetCrossRef
15.
Zurück zum Zitat Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI, pp. 3513–3519 (2018) Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI, pp. 3513–3519 (2018)
16.
Zurück zum Zitat Perozzi, B., Akoglu, L.: Scalable anomaly ranking of attributed neighborhoods. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 207–215. SIAM (2016) Perozzi, B., Akoglu, L.: Scalable anomaly ranking of attributed neighborhoods. In: Proceedings of the 2016 SIAM International Conference on Data Mining, pp. 207–215. SIAM (2016)
17.
Zurück zum Zitat Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020) Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1150–1160 (2020)
18.
Zurück zum Zitat Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019) Velickovic, P., Fedus, W., Hamilton, W.L., Liò, P., Bengio, Y., Hjelm, R.D.: Deep graph infomax. ICLR (Poster) 2(3), 4 (2019)
19.
Zurück zum Zitat Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10049–10057 (2021) Wan, S., Pan, S., Yang, J., Gong, C.: Contrastive and generative graph convolutional networks for graph-based semi-supervised learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 10049–10057 (2021)
20.
Zurück zum Zitat West, J., Bhattacharya, M.: Intelligent financial fraud detection: a comprehensive review. Comput. Secur. 57, 47–66 (2016)CrossRef West, J., Bhattacharya, M.: Intelligent financial fraud detection: a comprehensive review. Comput. Secur. 57, 47–66 (2016)CrossRef
21.
Zurück zum Zitat Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007) Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.: Scan: a structural clustering algorithm for networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 824–833 (2007)
22.
Zurück zum Zitat Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. 35, 12220–12233 (2021)CrossRef Zheng, Y., Jin, M., Liu, Y., Chi, L., Phan, K.T., Chen, Y.P.P.: Generative and contrastive self-supervised learning for graph anomaly detection. IEEE Trans. Knowl. Data Eng. 35, 12220–12233 (2021)CrossRef
23.
Zurück zum Zitat Zhou, S., Tan, Q., Xu, Z., Huang, X., Chung, F.L.: Subtractive aggregation for attributed network anomaly detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3672–3676 (2021) Zhou, S., Tan, Q., Xu, Z., Huang, X., Chung, F.L.: Subtractive aggregation for attributed network anomaly detection. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 3672–3676 (2021)
Metadaten
Titel
Dual Contrastive Learning for Anomaly Detection in Attributed Networks
verfasst von
Shijie Xue
He Kong
Qi Wang
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-57808-3_1