Skip to main content
Erschienen in: Journal of Computational Electronics 2/2015

01.06.2015

Dual metal-double gate tunnel field effect transistor with mono/hetero dielectric gate material

verfasst von: Prateek Jain, Vishwa Prabhat, Bahniman Ghosh

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, dual metal-double gate tunnel field effect transistor (DMG-DGTFET) is discussed for mono & hetero dielectric gate material. The hetero dielectric that we have used at the gate is a combination of SiO\(_{\text{2 }}\) and HfO\(_{\text{2 }}\). The DMG technique is used to optimize the performance of DGTFET along with the mono/hetero dielectric gate material. The results obtained from the simulation are discussed using energy band diagram, tunneling barrier width and compared with hetero & mono dielectric gate. With the application of hetero dielectric to the DMG-DGTFET, the advantages of both the techniques combine and the results shows that higher \(I_{ON} /I_{OFF}\) ratio \((2\times 10^{9})\) compared to the mono dielectric case \((2.5\times 10^{8})\). The average subthreshold slope also improves from 58 mV/decade in mono dielectric to 48 mV/decade in hetero dielectric DMG-DGTEFT. All the simulations are done in Synopsys TCAD for a channel length of 25 nm using the non-local tunneling model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hu, C., et al.: Prospect of tunneling green transistor for 0.1V CMOS. In: IEDM Technical Digest, pp. 16.1.1–16.1.4 (2010) Hu, C., et al.: Prospect of tunneling green transistor for 0.1V CMOS. In: IEDM Technical Digest, pp. 16.1.1–16.1.4 (2010)
2.
Zurück zum Zitat Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef Khatami, Y., Banerjee, K.: Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)CrossRef
3.
Zurück zum Zitat Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRefMATH Zhang, Q., Zhao, W., Seabaugh, A.: Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett. 27(4), 297–300 (2006)CrossRefMATH
4.
Zurück zum Zitat Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunneling field effect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef
5.
Zurück zum Zitat Luisier, M., Klimeck, G.: Performances comparisons of tunneling field effect transistors made of InSb, Carbon and GaSb-InAs broken gap heterostructures. In: IEDM Technical Digest, pp. 1–4 (2009) Luisier, M., Klimeck, G.: Performances comparisons of tunneling field effect transistors made of InSb, Carbon and GaSb-InAs broken gap heterostructures. In: IEDM Technical Digest, pp. 1–4 (2009)
6.
Zurück zum Zitat Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunnelingfieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef Choi, W.Y., Park, B.-G., Lee, J.D., Liu, T.-J.K.: Tunnelingfieldeffect transistors (TFETs) with subthreshold swing (SS) less than 60 mv/dec. IEEE Electron Device Lett. 28, 743–745 (2007)CrossRef
7.
Zurück zum Zitat Avci, U.E., Rios, R., Kuhn, K.J., Young, I.A. : Comparision of Power and performance of the TFET and MOSFET and consideration of P-Tfet. In: IEEE-Nano, pp. 869–872 (2011) Avci, U.E., Rios, R., Kuhn, K.J., Young, I.A. : Comparision of Power and performance of the TFET and MOSFET and consideration of P-Tfet. In: IEEE-Nano, pp. 869–872 (2011)
8.
Zurück zum Zitat Esaki, L.: IBM Thomas J. Watson Research center Long Journey into Tunneling Nobel lecture (1973) Esaki, L.: IBM Thomas J. Watson Research center Long Journey into Tunneling Nobel lecture (1973)
9.
Zurück zum Zitat Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors, 2009 Edition Semiconductor Industry Association (SIA), International Technology Roadmap for Semiconductors, 2009 Edition
10.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: Theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6), 064503 (2009) Saurabh, S., Kumar, M.J.: Impact of strain on drain current and threshold voltage of nanoscale double gate tunnel field effect transistor: Theoretical investigation and analysis. Jpn. J. Appl. Phys. 48(6), 064503 (2009)
11.
Zurück zum Zitat Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat,K.: Double gate strained-Ge hetero structure tunneling FET (TFET) with record high drive currents and \(<\)60 mV/decsubthreshold slope. In: IEDM Tech. Dig., pp. 1–3 (2008) Krishnamohan, T., Kim, D., Raghunathan, S., Saraswat,K.: Double gate strained-Ge hetero structure tunneling FET (TFET) with record high drive currents and \(<\)60 mV/decsubthreshold slope. In: IEDM Tech. Dig., pp. 1–3 (2008)
12.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid State Electron. 51(11/12), 1500–1507 (2007)CrossRef Boucart, K., Ionescu, A.M.: Length scaling of the double gate tunnel FET with a high-K gate dielectric. Solid State Electron. 51(11/12), 1500–1507 (2007)CrossRef
13.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-\(\kappa \) gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
14.
Zurück zum Zitat Vishnoi, R., Jagadesh Kumar, M.: Compact analytical model of dual material gate tunneling field- effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61, 6 (2014) Vishnoi, R., Jagadesh Kumar, M.: Compact analytical model of dual material gate tunneling field- effect transistor using interband tunneling and channel transport. IEEE Trans. Electron Devices 61, 6 (2014)
15.
Zurück zum Zitat Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)CrossRef Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91, 053102 (2007)CrossRef
16.
Zurück zum Zitat Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001–085001 (2011)CrossRef Zhuge, J., Verhulst, A.S., Vandenberghe, W.G., Dehaene, W., Huang, R., Wang, Y., Groeseneken, G.: Digital-circuit analysis of short-gate tunnel FETs for low-voltage applications. Semicond. Sci. Technol. 26, 085001–085001 (2011)CrossRef
17.
Zurück zum Zitat Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef
18.
Zurück zum Zitat Chaudhary, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 1463–1467 (2004)CrossRef Chaudhary, A., Kumar, M.J.: Investigation of the novel attributes of a fully depleted dual-material gate SOI MOSFET. IEEE Trans. Electron Devices 51(9), 1463–1467 (2004)CrossRef
19.
Zurück zum Zitat Lee, M.J., Choi, W.Y.: Effect of device geometry on hetero gate dielectric tunneling field effect transistor. IEEE Electronic Device Lett. 22, 10 (2012) Lee, M.J., Choi, W.Y.: Effect of device geometry on hetero gate dielectric tunneling field effect transistor. IEEE Electronic Device Lett. 22, 10 (2012)
20.
Zurück zum Zitat Bhowmick, B., Baishy, S.: Hetero double gate-dielectric tunnel FET with record high Ion/Ioff ratio. In: IJCA Conference (ICVCI) (4), pp. 11–13 (2011) Bhowmick, B., Baishy, S.: Hetero double gate-dielectric tunnel FET with record high Ion/Ioff ratio. In: IJCA Conference (ICVCI) (4), pp. 11–13 (2011)
21.
Zurück zum Zitat Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef Long, W., Ou, H., Kuo, J.M., Chin, K.K.: Dual-material gate (DMG) field effect transistor. IEEE Trans. Electron Devices 46(5), 865–870 (1999)CrossRef
22.
Zurück zum Zitat Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide- semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)CrossRef Na, K.Y., Kim, Y.S.: Silicon complementary metal-oxide- semiconductor field-effect transistors with dual work function gate. Jpn. J. Appl. Phys. 45(12), 9033–9036 (2006)CrossRef
23.
Zurück zum Zitat Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91(5), 053 102-1–053 102-3 (2007)CrossRef Verhulst, A.S., Vandenberghe, W.G., Maex, K., Groeseneken, G.: Tunnel field-effect transistor without gate-drain overlap. Appl. Phys. Lett. 91(5), 053 102-1–053 102-3 (2007)CrossRef
24.
Zurück zum Zitat Saurabh, S., Kumar, M.J.: Estimation and compensation of process induced variations in nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans. Device Mater. Rel. 10(3), 390–395 (2010)CrossRef Saurabh, S., Kumar, M.J.: Estimation and compensation of process induced variations in nanoscale tunnel field effect transistors (TFETs) for improved reliability. IEEE Trans. Device Mater. Rel. 10(3), 390–395 (2010)CrossRef
25.
Zurück zum Zitat Synopsys, TCAD Sentaurus device, ver. D2010–03 (2010) Synopsys, TCAD Sentaurus device, ver. D2010–03 (2010)
26.
Zurück zum Zitat Fukuda, K., Mori, T., Ota, H.: On the non-local modelling of Tunnel-FET In: SISPAD, pp. 284–287 (2012) Fukuda, K., Mori, T., Ota, H.: On the non-local modelling of Tunnel-FET In: SISPAD, pp. 284–287 (2012)
27.
Zurück zum Zitat Darwish, M.N., et al.: An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Electron Devices 44(9), 1529–1538 (1997)CrossRefMathSciNet Darwish, M.N., et al.: An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Electron Devices 44(9), 1529–1538 (1997)CrossRefMathSciNet
28.
Zurück zum Zitat Lombardi, C., et al.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. 7(11), 1164–1171 (1988)CrossRef Lombardi, C., et al.: A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. 7(11), 1164–1171 (1988)CrossRef
29.
Zurück zum Zitat Paasch, G., Übensee, H.: A modified local density approximation: electron density in inversion layers. Physica Status Solidi (b) 113(1), 165–178 (1982)CrossRef Paasch, G., Übensee, H.: A modified local density approximation: electron density in inversion layers. Physica Status Solidi (b) 113(1), 165–178 (1982)CrossRef
30.
Zurück zum Zitat Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503 (2011)CrossRef Vandenberghe, W.G., Sorée, B., Magnus, W., Groeseneken, G., Fischetti, M.V.: Impact of field-induced quantum confinement in tunneling field-effect devices. Appl. Phys. Lett. 98, 143503 (2011)CrossRef
31.
Zurück zum Zitat Yipeng, J., Kangliang, W., Taihuan, W., Gang, D., Xiaoyan, L.: Comparison of band-to-band tunneling models in Si and Si-Ge junctions. J. Semiconduct. 34, 9 (2013) Yipeng, J., Kangliang, W., Taihuan, W., Gang, D., Xiaoyan, L.: Comparison of band-to-band tunneling models in Si and Si-Ge junctions. J. Semiconduct. 34, 9 (2013)
32.
Zurück zum Zitat Jagadesh Kumar, M.: Novel attributes of a dual metal gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 2 (2011)CrossRef Jagadesh Kumar, M.: Novel attributes of a dual metal gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58, 2 (2011)CrossRef
33.
Zurück zum Zitat Ranade, P., Yeo, Y.C., Lu, Q., Takeuchi, H., King, T.J., Hu, C.: Molybdenum as a gate electrode for deep sub-micron CMOS technology. Proc. MRS Symp. 611, C3.2.1–C3.2.6 (2000)CrossRef Ranade, P., Yeo, Y.C., Lu, Q., Takeuchi, H., King, T.J., Hu, C.: Molybdenum as a gate electrode for deep sub-micron CMOS technology. Proc. MRS Symp. 611, C3.2.1–C3.2.6 (2000)CrossRef
34.
Zurück zum Zitat Hasan, M., Park, H., Yang, H., Hwang, H., Jung, H.S., Lee, J.H.: Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(10), 103 510 1–103 510 3 (2007)CrossRef Hasan, M., Park, H., Yang, H., Hwang, H., Jung, H.S., Lee, J.H.: Ultralow work function of scandium metal gate with tantalum nitride interface layer for n-channel metal oxide semiconductor application. Appl. Phys. Lett. 90(10), 103 510 1–103 510 3 (2007)CrossRef
35.
Zurück zum Zitat Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef Choi, W.Y., Lee, W.: Hetero-gate-dielectric tunneling field effect transistors. IEEE Trans. Electron Devices 57(9), 2317–2319 (2010)CrossRef
36.
Zurück zum Zitat Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1959)CrossRef Kane, E.O.: Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181–188 (1959)CrossRef
Metadaten
Titel
Dual metal-double gate tunnel field effect transistor with mono/hetero dielectric gate material
verfasst von
Prateek Jain
Vishwa Prabhat
Bahniman Ghosh
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2015
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-015-0685-1

Weitere Artikel der Ausgabe 2/2015

Journal of Computational Electronics 2/2015 Zur Ausgabe

Neuer Inhalt