Skip to main content
Erschienen in: Journal of Intelligent Information Systems 2/2018

19.04.2017

Dynamic adaptation of online ensembles for drifting data streams

verfasst von: M. Kehinde Olorunnimbe, Herna L. Viktor, Eric Paquet

Erschienen in: Journal of Intelligent Information Systems | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The success of data stream mining techniques has allowed decision makers to analyze their data in multiple domains, ranging from monitoring network intrusion to financial markets analysis and online sales transactions exploration. Specifically, online ensembles that construct accurate models against drifting data streams have been developed. Recently, there has been a surge in interest in mobile (or so-called pocket) data stream mining, aiming to construct near real-time models for data stream mining applications that run on mobile devices. In such a setting, it follows that the computational resources are limited and that there is a need to adapt analytics to map the resource usage requirements. Consequently, the resultant models should not only be highly accurate, but they should also adapt swiftly to changes. In addition, the data mining techniques should be fast, scalable, and efficient in terms of resource allocation. It then becomes important to consider Return on Investment (ROI) issues such as storage requirements and memory utilization. This paper introduces the Adaptive Ensemble Size (AES) algorithm, an extension of the Online Bagging method, to address these issues. Our AES method dynamically adapts the sizes of ensembles, based on ROI usage patterns. We illustrate our approach by analyzing the performances against both synthetic and real-world data streams. The results, when comparing our AES algorithm with the state-of-the-art, indicate that we are able to obtain a high Return on Investment (ROI) and to swiftly adapt to change, without compromising on the predictive accuracy.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Attar, V., Sinha, P., & Wankhade, K. (2010). A fast and light classifier for data streams. Evolving Systems, 1(3), 199–207.CrossRef Attar, V., Sinha, P., & Wankhade, K. (2010). A fast and light classifier for data streams. Evolving Systems, 1(3), 199–207.CrossRef
Zurück zum Zitat Bifet, A., Holmes, G., Pfahringer, B., & Gavalda, R.L (2009). Improving adaptive bagging methods for evolving data streams. In Asian conference on machine learning (pp. 23–37). Bifet, A., Holmes, G., Pfahringer, B., & Gavalda, R.L (2009). Improving adaptive bagging methods for evolving data streams. In Asian conference on machine learning (pp. 23–37).
Zurück zum Zitat Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavalda, R.L (2009). New ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 139–148). Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., & Gavalda, R.L (2009). New ensemble methods for evolving data streams. In Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 139–148).
Zurück zum Zitat Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. In Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases, ECML/PKDD (pp. 135–150). Bifet, A., Holmes, G., & Pfahringer, B. (2010). Leveraging bagging for evolving data streams. In Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases, ECML/PKDD (pp. 135–150).
Zurück zum Zitat Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of Machine Learning Research, 11, 1601–1604. Bifet, A., Holmes, G., Kirkby, R., & Pfahringer, B. (2010). MOA: Massive online analysis. Journal of Machine Learning Research, 11, 1601–1604.
Zurück zum Zitat Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In SIAM international conference on data mining. Bifet, A., & Gavaldà, R. (2007). Learning from time-changing data with adaptive windowing. In SIAM international conference on data mining.
Zurück zum Zitat Bifet, A., Read, J., žliobaite, I., Pfahringer, B., & Holmes, G. (2013). Pitfalls in benchmarking data stream classification and how to avoid them. In Machine learning and knowledge discovery in databases (pp. 465–479). Springer, Berlin Heidelberg. Bifet, A., Read, J., žliobaite, I., Pfahringer, B., & Holmes, G. (2013). Pitfalls in benchmarking data stream classification and how to avoid them. In Machine learning and knowledge discovery in databases (pp. 465–479). Springer, Berlin Heidelberg.
Zurück zum Zitat Brzezinski, D., & Stefanowski, J. (2014). Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.CrossRef Brzezinski, D., & Stefanowski, J. (2014). Reacting to different types of concept drift: the accuracy updated ensemble algorithm. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 81–94.CrossRef
Zurück zum Zitat Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows. In 13th annual ACM-SIAM symposium on discrete algorithms (pp. 635–644). Datar, M., Gionis, A., Indyk, P., & Motwani, R. (2002). Maintaining stream statistics over sliding windows. In 13th annual ACM-SIAM symposium on discrete algorithms (pp. 635–644).
Zurück zum Zitat Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’00, NY (pp. 71–80). Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’00, NY (pp. 71–80).
Zurück zum Zitat Gama, J., Rocha, R., & Medas, P. (2003). Accurate decision trees for mining high-speed data streams. In Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03 (pp. 523–528). Gama, J., Rocha, R., & Medas, P. (2003). Accurate decision trees for mining high-speed data streams. In Proceedings of the ninth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’03 (pp. 523–528).
Zurück zum Zitat Gama, J., Medas, P., Castillo, C., & Rodrigues, P. (2004). Learning with drift detection. In Proceedings of the 17th Brazilian symposium on artificial intelligence, SBIA 2004 (Vol. 3171, pp. 286–295). Springer. Gama, J., Medas, P., Castillo, C., & Rodrigues, P. (2004). Learning with drift detection. In Proceedings of the 17th Brazilian symposium on artificial intelligence, SBIA 2004 (Vol. 3171, pp. 286–295). Springer.
Zurück zum Zitat Gama, J., Sebastião, R., & Rodrigues, P. (2013). On evaluating stream learning algorithms. Machine Learning, 90(3), 317–346.MathSciNetCrossRefMATH Gama, J., Sebastião, R., & Rodrigues, P. (2013). On evaluating stream learning algorithms. Machine Learning, 90(3), 317–346.MathSciNetCrossRefMATH
Zurück zum Zitat Gaber, M. M., Stahl, F., & Gomes, J.B. (2014). Pocket data mining: big data on small devices, Studies in Big Data 2. Berlin: Springer.CrossRef Gaber, M. M., Stahl, F., & Gomes, J.B. (2014). Pocket data mining: big data on small devices, Studies in Big Data 2. Berlin: Springer.CrossRef
Zurück zum Zitat Hansen, L.K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef Hansen, L.K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.CrossRef
Zurück zum Zitat Haghighi, P.D., Zaslavsky, A., Krishnaswamy, S., Gaber, M. M., & Loke, S. (2009). Context-aware adaptive data stream mining. Intelligent Data Analysis, 13 (3), 423–434. Haghighi, P.D., Zaslavsky, A., Krishnaswamy, S., Gaber, M. M., & Loke, S. (2009). Context-aware adaptive data stream mining. Intelligent Data Analysis, 13 (3), 423–434.
Zurück zum Zitat Kargupta, H., Hoon, P., Pittie, S., & Liu, L. (2002). Mobimine: monitoring the stock market from a PDA. ACM SIGKDD Explorations, 3, 37–47.CrossRef Kargupta, H., Hoon, P., Pittie, S., & Liu, L. (2002). Mobimine: monitoring the stock market from a PDA. ACM SIGKDD Explorations, 3, 37–47.CrossRef
Zurück zum Zitat Krzywinski, M., & Altman, N. (2014). Points of significance: visualizing samples with box plots. In Nature Methods 11 (pp. 119–120). doi:10.1038/nmeth.2813. Krzywinski, M., & Altman, N. (2014). Points of significance: visualizing samples with box plots. In Nature Methods 11 (pp. 119–120). doi:10.​1038/​nmeth.​2813.
Zurück zum Zitat Massart, D. L., Smeyers-verbeke, A. J., Capron, & Schlesier, K. (2005). Visual presentation of data by means of box plots. Massart, D. L., Smeyers-verbeke, A. J., Capron, & Schlesier, K. (2005). Visual presentation of data by means of box plots.
Zurück zum Zitat Kolter, J.Z., & Maloof, M.A. (2007). Dynamic weighted majority: an ensemble method for drifting concepts. Journal of Machine Learning Research, 8, 2755–2790.MATH Kolter, J.Z., & Maloof, M.A. (2007). Dynamic weighted majority: an ensemble method for drifting concepts. Journal of Machine Learning Research, 8, 2755–2790.MATH
Zurück zum Zitat Krishnaswamy, S., Gama, J., & Gaber, M.M. (2012). Mobile data mining: from algorithms to applications. In IEEE 13th international conference on mobile data management (MDM) (pp. 360–363). Krishnaswamy, S., Gama, J., & Gaber, M.M. (2012). Mobile data mining: from algorithms to applications. In IEEE 13th international conference on mobile data management (MDM) (pp. 360–363).
Zurück zum Zitat Opitz, D., & Maclin, R. (1999). Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research, 11, 169–198.MATH Opitz, D., & Maclin, R. (1999). Popular ensemble methods: an empirical study. Journal of Artificial Intelligence Research, 11, 169–198.MATH
Zurück zum Zitat Oza, N.C., & Russell, S. (2001). Online bagging and boosting. In Artificial intelligence and statistics (pp. 105–112). Oza, N.C., & Russell, S. (2001). Online bagging and boosting. In Artificial intelligence and statistics (pp. 105–112).
Zurück zum Zitat Oza, N.C., & Russell, S. (2001). Experimental comparisons of online and batch versions of bagging and boosting. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’01 (pp. 359–364). Oza, N.C., & Russell, S. (2001). Experimental comparisons of online and batch versions of bagging and boosting. In Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’01 (pp. 359–364).
Zurück zum Zitat van Rijn, J., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In S. Džeroski, P. Panov, D. Kocev, L. Todorovski (Eds.) Discovery science, lecture notes in computer science (Vol. 8777, pp. 325–336). Springer International Publishing. van Rijn, J., Holmes, G., Pfahringer, B., & Vanschoren, J. (2014). Algorithm selection on data streams. In S. Džeroski, P. Panov, D. Kocev, L. Todorovski (Eds.) Discovery science, lecture notes in computer science (Vol. 8777, pp. 325–336). Springer International Publishing.
Zurück zum Zitat Weiss, G. M., Bianca, Z., & Maytal, S.-T. (2008). Guest editorial: special issue on utility-based data mining. Data Mining and Knowledge Discovery, 17(2), 129–135.MathSciNetCrossRef Weiss, G. M., Bianca, Z., & Maytal, S.-T. (2008). Guest editorial: special issue on utility-based data mining. Data Mining and Knowledge Discovery, 17(2), 129–135.MathSciNetCrossRef
Zurück zum Zitat žliobaite, I., Budka, M., & Stahl, F. (2015). Towards cost-sensitive adaptation: When is it worth updating your predictive model? Neurocomputing, 150(Part A(0)), 240–249.CrossRef žliobaite, I., Budka, M., & Stahl, F. (2015). Towards cost-sensitive adaptation: When is it worth updating your predictive model? Neurocomputing, 150(Part A(0)), 240–249.CrossRef
Zurück zum Zitat žliobaite, I. (2013). How good is the Electricity benchmark for evaluating concept drift adaptation, arXiv:1301.3524. žliobaite, I. (2013). How good is the Electricity benchmark for evaluating concept drift adaptation, arXiv:1301.​3524.
Zurück zum Zitat žliobaite, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 27–39.CrossRef žliobaite, I., Bifet, A., Pfahringer, B., & Holmes, G. (2014). Active learning with drifting streaming data. IEEE Transactions on Neural Networks and Learning Systems, 25(1), 27–39.CrossRef
Zurück zum Zitat žliobaite, I. (2010). Learning until concept drift: a review, Vilnius University, Technical Report, arxiv:1010.4784. žliobaite, I. (2010). Learning until concept drift: a review, Vilnius University, Technical Report, arxiv:1010.​4784.
Metadaten
Titel
Dynamic adaptation of online ensembles for drifting data streams
verfasst von
M. Kehinde Olorunnimbe
Herna L. Viktor
Eric Paquet
Publikationsdatum
19.04.2017
Verlag
Springer US
Erschienen in
Journal of Intelligent Information Systems / Ausgabe 2/2018
Print ISSN: 0925-9902
Elektronische ISSN: 1573-7675
DOI
https://doi.org/10.1007/s10844-017-0460-9

Weitere Artikel der Ausgabe 2/2018

Journal of Intelligent Information Systems 2/2018 Zur Ausgabe