Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Computational Mechanics 6/2015

01.06.2015

Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models

verfasst von: Ming-Chen Hsu, David Kamensky, Fei Xu, Josef Kiendl, Chenglong Wang, Michael C. H. Wu, Joshua Mineroff, Alessandro Reali, Yuri Bazilevs, Michael S. Sacks

Erschienen in: Computational Mechanics | Ausgabe 6/2015

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper builds on a recently developed immersogeometric fluid–structure interaction (FSI) methodology for bioprosthetic heart valve (BHV) modeling and simulation. It enhances the proposed framework in the areas of geometry design and constitutive modeling. With these enhancements, BHV FSI simulations may be performed with greater levels of automation, robustness and physical realism. In addition, the paper presents a comparison between FSI analysis and standalone structural dynamics simulation driven by prescribed transvalvular pressure, the latter being a more common modeling choice for this class of problems. The FSI computation achieved better physiological realism in predicting the valve leaflet deformation than its standalone structural dynamics counterpart.
Fußnoten
1
Maximum in-plane principal Green-Lagrange strain, the largest eigenvalue of \({\mathbf {E}}\).
 
Literatur
1.
Zurück zum Zitat Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080 CrossRef Schoen FJ, Levy RJ (2005) Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg 79(3):1072–1080 CrossRef
2.
Zurück zum Zitat Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048 CrossRef Pibarot P, Dumesnil JG (2009) Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048 CrossRef
3.
Zurück zum Zitat Li C-P, Chen S-F, Lo C-W, Lu P-C (2011) Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO Journal 57(3):188–196 CrossRef Li C-P, Chen S-F, Lo C-W, Lu P-C (2011) Turbulence characteristics downstream of a new trileaflet mechanical heart valve. ASAIO Journal 57(3):188–196 CrossRef
4.
Zurück zum Zitat Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann Biomed Eng 40(7):1468–1485 CrossRef Yun BM, Wu J, Simon HA, Arjunon S, Sotiropoulos F, Aidun CK, Yoganathan AP (2012) A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann Biomed Eng 40(7):1468–1485 CrossRef
5.
Zurück zum Zitat Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55:135–144 CrossRef Siddiqui RF, Abraham JR, Butany J (2009) Bioprosthetic heart valves: modes of failure. Histopathology 55:135–144 CrossRef
6.
Zurück zum Zitat Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 62(3):359–371 CrossRef Sacks MS, Schoen FJ (2002) Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res 62(3):359–371 CrossRef
7.
Zurück zum Zitat Sacks MS, Mirnajafi A, Sun W, Schmidt P (2006) Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Rev Med Devices 3(6):817–834 CrossRef Sacks MS, Mirnajafi A, Sun W, Schmidt P (2006) Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Rev Med Devices 3(6):817–834 CrossRef
8.
Zurück zum Zitat Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905–914 CrossRef Sun W, Abad A, Sacks MS (2005) Simulated bioprosthetic heart valve deformation under quasi-static loading. J Biomech Eng 127(6):905–914 CrossRef
9.
Zurück zum Zitat Saleeb AF, Kumar A, Thomas VS (2013) The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles. Med Eng Phys 35(1):23–35 CrossRef Saleeb AF, Kumar A, Thomas VS (2013) The important roles of tissue anisotropy and tissue-to-tissue contact on the dynamical behavior of a symmetric tri-leaflet valve during multiple cardiac pressure cycles. Med Eng Phys 35(1):23–35 CrossRef
10.
Zurück zum Zitat Auricchio F, Conti M, Ferrara A, Morganti S, Reali A (2014) Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput Methods Biomech Biomed Eng 17(3):277–285 CrossRef Auricchio F, Conti M, Ferrara A, Morganti S, Reali A (2014) Patient-specific simulation of a stentless aortic valve implant: the impact of fibres on leaflet performance. Comput Methods Biomech Biomed Eng 17(3):277–285 CrossRef
11.
Zurück zum Zitat Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053 MathSciNetCrossRef Kamensky D, Hsu M-C, Schillinger D, Evans JA, Aggarwal A, Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. Comput Methods Appl Mech Eng 284:1005–1053 MathSciNetCrossRef
12.
Zurück zum Zitat Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071 MATHMathSciNetCrossRef Hsu M-C, Kamensky D, Bazilevs Y, Sacks MS, Hughes TJR (2014) Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput Mech 54:1055–1071 MATHMathSciNetCrossRef
13.
Zurück zum Zitat Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271 MATHCrossRef Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10(2):252–271 MATHCrossRef
16.
Zurück zum Zitat Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21 Sotiropoulos F, Yang X (2014) Immersed boundary methods for simulating fluid-structure interaction. Prog Aerosp Sci 65:1–21
17.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195 MATHMathSciNetCrossRef Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195 MATHMathSciNetCrossRef
18.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester CrossRef Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis: toward integration of CAD and FEA. Wiley, Chichester CrossRef
19.
20.
Zurück zum Zitat Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914 MATHCrossRef Kiendl J, Bletzinger K-U, Linhard J, Wüchner R (2009) Isogeometric shell analysis with Kirchhoff–Love elements. Comput Methods Appl Mech Eng 198:3902–3914 MATHCrossRef
21.
Zurück zum Zitat Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416 MATHCrossRef Kiendl J, Bazilevs Y, Hsu M-C, Wüchner R, Bletzinger K-U (2010) The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches. Comput Methods Appl Mech Eng 199:2403–2416 MATHCrossRef
25.
Zurück zum Zitat Piegl L, Tiller W (1997) The NURBS Book (Monographs in Visual Communication), 2nd edn. Springer, New York CrossRef Piegl L, Tiller W (1997) The NURBS Book (Monographs in Visual Communication), 2nd edn. Springer, New York CrossRef
26.
Zurück zum Zitat Scott MA, Hughes TJR, Sederberg TW, Sederberg MT (2014) An integrated approach to engineering design and analysis using the Autodesk T-spline plugin for Rhino3d. ICES REPORT 14–33, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Sept 2014 Scott MA, Hughes TJR, Sederberg TW, Sederberg MT (2014) An integrated approach to engineering design and analysis using the Autodesk T-spline plugin for Rhino3d. ICES REPORT 14–33, The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Sept 2014
27.
Zurück zum Zitat Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29(1):63–76 MATHMathSciNetCrossRef Li X, Zheng J, Sederberg TW, Hughes TJR, Scott MA (2012) On linear independence of T-spline blending functions. Comput Aided Geom Des 29(1):63–76 MATHMathSciNetCrossRef
28.
Zurück zum Zitat Li X, Scott MA (2014) Analysis-suitable T-splines: Characterization, refineability, and approximation. Mathematical Models and Methods in Applied Sciences 24:1141–1164 MATHMathSciNetCrossRef Li X, Scott MA (2014) Analysis-suitable T-splines: Characterization, refineability, and approximation. Mathematical Models and Methods in Applied Sciences 24:1141–1164 MATHMathSciNetCrossRef
31.
Zurück zum Zitat Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275 CrossRef Kim H, Lu J, Sacks MS, Chandran KB (2008) Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann Biomed Eng 36(2):262–275 CrossRef
32.
Zurück zum Zitat Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283 CrossRef Sederberg TW, Cardon DL, Finnigan GT, North NS, Zheng J, Lyche T (2004) T-spline simplification and local refinement. ACM Trans Graph 23(3):276–283 CrossRef
33.
Zurück zum Zitat Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester
34.
Zurück zum Zitat Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156 MATHMathSciNetCrossRef Scott MA, Borden MJ, Verhoosel CV, Sederberg TW, Hughes TJR (2011) Isogeometric finite element data structures based on Bézier extraction of T-splines. Int J Numer Methods Eng 88:126–156 MATHMathSciNetCrossRef
35.
Zurück zum Zitat Kamensky D, Evans JA, Hsu M-C (2015) Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Communications in Computational Physics. Accepted Kamensky D, Evans JA, Hsu M-C (2015) Stability and conservation properties of collocated constraints in immersogeometric fluid-thin structure interaction analysis. Communications in Computational Physics. Accepted
36.
Zurück zum Zitat Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349 MATHMathSciNetCrossRef Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349 MATHMathSciNetCrossRef
37.
Zurück zum Zitat Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723 MATHCrossRef Donea J, Giuliani S, Halleux JP (1982) An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput Methods Appl Mech Eng 33(1–3):689–723 MATHCrossRef
38.
Zurück zum Zitat Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582 MATHMathSciNetCrossRef Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comput Methods Appl Mech Eng 191:561–582 MATHMathSciNetCrossRef
39.
Zurück zum Zitat Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83:155–165 CrossRef Gerbeau J-F, Vidrascu M, Frey P (2005) Fluid-structure interaction in blood flows on geometries based on medical imaging. Comput Struct 83:155–165 CrossRef
40.
Zurück zum Zitat Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763 MATHMathSciNetCrossRef Nobile F, Vergara C (2008) An effective fluid-structure interaction formulation for vascular dynamics by generalized Robin conditions. SIAM J Sci Comput 30:731–763 MATHMathSciNetCrossRef
41.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16 MATHMathSciNetCrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Liang X, Kvamsdal T, Brekken R, Isaksen J (2010) A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput Mech 46:3–16 MATHMathSciNetCrossRef
42.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498 CrossRef Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid-structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498 CrossRef
43.
Zurück zum Zitat Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comput 33:1181–1211 MATHMathSciNetCrossRef Perego M, Veneziani A, Vergara C (2011) A variational approach for estimating the compliance of the cardiovascular tissue: an inverse fluid-structure interaction problem. SIAM J Sci Comput 33:1181–1211 MATHMathSciNetCrossRef
44.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599 MathSciNetCrossRef Hsu M-C, Bazilevs Y (2011) Blood vessel tissue prestress modeling for vascular fluid-structure interaction simulations. Finite Elem Anal Des 47:593–599 MathSciNetCrossRef
45.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225 MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE (2012) Space-time and ALE-VMS techniques for patient-specific cardiovascular fluid-structure interaction modeling. Arch Comput Methods Eng 19:171–225 MathSciNetCrossRef
46.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486 MATHMathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Long CC, Marsden AL, Schjodt K (2014) ST and ALE-VMS methods for patient-specific cardiovascular fluid mechanics modeling. Math Models Methods Appl Sci 24:2437–2486 MATHMathSciNetCrossRef
47.
Zurück zum Zitat Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44 MATHMathSciNet Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44 MATHMathSciNet
48.
Zurück zum Zitat Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575 MATHMathSciNetCrossRef Tezduyar TE (2003) Computation of moving boundaries and interfaces and stabilization parameters. Int J Numer Methods Fluids 43:555–575 MATHMathSciNetCrossRef
49.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900 MATHMathSciNetCrossRef Tezduyar TE, Sathe S (2007) Modelling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6–8):855–900 MATHMathSciNetCrossRef
50.
51.
Zurück zum Zitat Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001 MathSciNetCrossRef Takizawa K, Tezduyar TE (2012) Space-time fluid-structure interaction methods. Math Models Methods Appl Sci 22:1230001 MathSciNetCrossRef
52.
Zurück zum Zitat Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073 MATHMathSciNetCrossRef Takizawa K, Schjodt K, Puntel A, Kostov N, Tezduyar TE (2013) Patient-specific computational analysis of the influence of a stent on the unsteady flow in cerebral aneurysms. Comput Mech 51:1061–1073 MATHMathSciNetCrossRef
53.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time interface-tracking with topology change (ST-TC). Comput Mech 54:955–971 MATHMathSciNetCrossRef
54.
Zurück zum Zitat Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053 MATHCrossRef Takizawa K, Torii R, Takagi H, Tezduyar TE, Xu XY (2014) Coronary arterial dynamics computation with medical-image-based time-dependent anatomical models and element-based zero-stress state estimates. Comput Mech 54:1047–1053 MATHCrossRef
55.
Zurück zum Zitat Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986 MATHMathSciNetCrossRef Takizawa K, Tezduyar TE, Buscher A, Asada S (2014) Space-time fluid mechanics computation of heart valve models. Comput Mech 54:973–986 MATHMathSciNetCrossRef
56.
Zurück zum Zitat Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Zhang Y, Hughes TJR (2006) Isogeometric fluid-structure interaction analysis with applications to arterial blood flow. Comput Mech 38:310–322 MATHMathSciNetCrossRef
57.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37 MATHMathSciNetCrossRef Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37 MATHMathSciNetCrossRef
58.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002 CrossRef Bazilevs Y, Hsu M-C, Takizawa K, Tezduyar TE (2012) ALE-VMS and ST-VMS methods for computer modeling of wind-turbine rotor aerodynamics and fluid-structure interaction. Math Models Methods Appl Sci 22:1230002 CrossRef
59.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and Space-Time methods. Arch Comput Methods Eng 21:481–508 MathSciNetCrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M-C, Øiseth O, Mathisen KM, Kostov N, McIntyre S (2014) Engineering analysis and design with ALE-VMS and Space-Time methods. Arch Comput Methods Eng 21:481–508 MathSciNetCrossRef
60.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398 MathSciNetCrossRef Bazilevs Y, Takizawa K, Tezduyar TE, Hsu M-C, Kostov N, McIntyre S (2014) Aerodynamic and FSI analysis of wind turbines with the ALE-VMS and ST-VMS methods. Arch Comput Methods Eng 21:359–398 MathSciNetCrossRef
61.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MATHMathSciNetCrossRef Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259 MATHMathSciNetCrossRef
62.
Zurück zum Zitat Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430 MATHCrossRef Tezduyar TE, Osawa Y (2000) Finite element stabilization parameters computed from element matrices and vectors. Comput Methods Appl Mech Eng 190:411–430 MATHCrossRef
63.
Zurück zum Zitat Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59 MATHCrossRef Hughes TJR, Mazzei L, Jansen KE (2000) Large eddy simulation and the variational multiscale method. Comput Vis Sci 3:47–59 MATHCrossRef
64.
Zurück zum Zitat Hughes TJR, Mazzei L, Oberai AA, Wray A (2001) The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512 CrossRef Hughes TJR, Mazzei L, Oberai AA, Wray A (2001) The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence. Phys Fluids 13:505–512 CrossRef
65.
Zurück zum Zitat Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Vol. 3: Fluids, chap. 2. Wiley, Hoboken Hughes TJR, Scovazzi G, Franca LP (2004) Multiscale and stabilized methods. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia of computational mechanics, Vol. 3: Fluids, chap. 2. Wiley, Hoboken
66.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201 MATHCrossRef Bazilevs Y, Calo VM, Cottrel JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201 MATHCrossRef
67.
Zurück zum Zitat Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840 MATHMathSciNetCrossRef Hsu M-C, Bazilevs Y, Calo VM, Tezduyar TE, Hughes TJR (2010) Improving stability of stabilized and multiscale formulations in flow simulations at small time steps. Comput Methods Appl Mech Eng 199:828–840 MATHMathSciNetCrossRef
68.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41 MathSciNetCrossRef Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41 MathSciNetCrossRef
69.
Zurück zum Zitat Wriggers P (2006) Comput Contact Mech, 2nd edn. Springer, Berlin Heidelberg CrossRef Wriggers P (2006) Comput Contact Mech, 2nd edn. Springer, Berlin Heidelberg CrossRef
70.
Zurück zum Zitat Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin Heidelberg CrossRef Laursen TA (2003) Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer, Berlin Heidelberg CrossRef
71.
Zurück zum Zitat Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520 MathSciNetCrossRef Morganti S, Auricchio F, Benson DJ, Gambarin FI, Hartmann S, Hughes TJR, Reali A (2015) Patient-specific isogeometric structural analysis of aortic valve closure. Comput Methods Appl Mech Eng 284:508–520 MathSciNetCrossRef
72.
Zurück zum Zitat Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550 MATHMathSciNetCrossRef Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y (2009) Patient-specific isogeometric fluid-structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198:3534–3550 MATHMathSciNetCrossRef
73.
Zurück zum Zitat Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, MOCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291 MATHMathSciNetCrossRef Esmaily-Moghadam M, Bazilevs Y, Hsia T-Y, Vignon-Clementel IE, MOCHA (2011) A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations. Comput Mech 48:277–291 MATHMathSciNetCrossRef
74.
Zurück zum Zitat Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- \(\alpha \) method. J Appl Mech 60:371–375 MATHMathSciNetCrossRef Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized- \(\alpha \) method. J Appl Mech 60:371–375 MATHMathSciNetCrossRef
75.
Zurück zum Zitat Jansen KE, Whiting CH, Hulbert GM (2000) A generalized- \(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319 MATHMathSciNetCrossRef Jansen KE, Whiting CH, Hulbert GM (2000) A generalized- \(\alpha \) method for integrating the filtered Navier-Stokes equations with a stabilized finite element method. Comput Methods Appl Mech Eng 190:305–319 MATHMathSciNetCrossRef
76.
Zurück zum Zitat Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753 MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Stein K (2006) Solution techniques for the fully-discretized equations in computation of fluid-structure interactions with the space-time formulations. Comput Methods Appl Mech Eng 195:5743–5753 MATHMathSciNetCrossRef
77.
Zurück zum Zitat Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027 MATHMathSciNetCrossRef Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space-time finite element techniques for computation of fluid-structure interactions. Comput Methods Appl Mech Eng 195:2002–2027 MATHMathSciNetCrossRef
78.
Zurück zum Zitat Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900 MATHMathSciNetCrossRef Tezduyar TE, Sathe S (2007) Modeling of fluid-structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54:855–900 MATHMathSciNetCrossRef
79.
Zurück zum Zitat Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Chichester CrossRef Bazilevs Y, Takizawa K, Tezduyar TE (2013) Computational fluid-structure interaction: methods and applications. Wiley, Chichester CrossRef
80.
Zurück zum Zitat Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201– 1218 MATHCrossRef Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Space-time finite element computation of complex fluid-structure interactions. Int J Numer Methods Fluids 64:1201– 1218 MATHCrossRef
81.
Zurück zum Zitat Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130 MATHCrossRef Tezduyar TE (2001) Finite element methods for flow problems with moving boundaries and interfaces. Arch Comput Methods Eng 8:83–130 MATHCrossRef
82.
Zurück zum Zitat Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11 MATHCrossRef Akin JE, Tezduyar TE, Ungor M (2007) Computation of flow problems with the mixed interface-tracking/interface-capturing technique (MITICT). Comput Fluids 36:2–11 MATHCrossRef
83.
Zurück zum Zitat Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030 MATHCrossRef Cruchaga MA, Celentano DJ, Tezduyar TE (2007) A numerical model based on the mixed interface-tracking/interface-capturing technique (MITICT) for flows with fluid-solid and fluid-fluid interfaces. Int J Numer Methods Fluids 54:1021–1030 MATHCrossRef
84.
Zurück zum Zitat Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. Journal of Applied Mechanics, accepted for publication Akkerman I, Bazilevs Y, Benson DJ, Farthing MW, Kees CE (2011) Free-surface flow and fluid-object interaction modeling with emphasis on ship hydrodynamics. Journal of Applied Mechanics, accepted for publication
85.
Zurück zum Zitat Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53(1):29–43 MATHMathSciNetCrossRef Wick T (2014) Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity. Comput Mech 53(1):29–43 MATHMathSciNetCrossRef
86.
Zurück zum Zitat Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36 CrossRef Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10): 27–36 CrossRef
87.
Zurück zum Zitat Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94 MATHCrossRef
88.
Zurück zum Zitat Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63 MATHCrossRef Stein K, Tezduyar T, Benney R (2003) Mesh moving techniques for fluid-structure interactions with large displacements. J Appl Mech 70:58–63 MATHCrossRef
89.
Zurück zum Zitat Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032 MATHCrossRef Stein K, Tezduyar TE, Benney R (2004) Automatic mesh update with the solid-extension mesh moving technique. Comput Methods Appl Mech Eng 193:2019–2032 MATHCrossRef
90.
Zurück zum Zitat Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26 MATHMathSciNetCrossRef Bazilevs Y, Hughes TJR (2007) Weak imposition of Dirichlet boundary conditions in fluid mechanics. Comput Fluids 36: 12–26 MATHMathSciNetCrossRef
91.
Zurück zum Zitat Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862 MATHMathSciNetCrossRef Bazilevs Y, Michler C, Calo VM, Hughes TJR (2007) Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput Methods Appl Mech Eng 196:4853–4862 MATHMathSciNetCrossRef
92.
Zurück zum Zitat Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790 MATHMathSciNetCrossRef Bazilevs Y, Michler C, Calo VM, Hughes TJR (2010) Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly enforced boundary conditions on unstretched meshes. Comput Methods Appl Mech Eng 199:780–790 MATHMathSciNetCrossRef
93.
Zurück zum Zitat Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511 MATHMathSciNetCrossRef Hsu M-C, Akkerman I, Bazilevs Y (2012) Wind turbine aerodynamics using ALE-VMS: validation and the role of weakly enforced boundary conditions. Comput Mech 50:499–511 MATHMathSciNetCrossRef
94.
Zurück zum Zitat Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657 CrossRef Tong P, Fung Y-C (1976) The stress-strain relationship for the skin. J Biomech 9(10):649–657 CrossRef
95.
Zurück zum Zitat Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York CrossRef Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York CrossRef
96.
Zurück zum Zitat Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng 125(3):372–380 CrossRef Sun W, Sacks MS, Sellaro TL, Slaughter WS, Scott MJ (2003) Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J Biomech Eng 125(3):372–380 CrossRef
97.
Zurück zum Zitat Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47(9):2043–2054 CrossRef Fan R, Sacks MS (2014) Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J Biomech 47(9):2043–2054 CrossRef
98.
Zurück zum Zitat Mirnajafi A, Raymer J, Scott MJ, Sacks MS (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26(7):795–804 Mirnajafi A, Raymer J, Scott MJ, Sacks MS (2005) The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26(7):795–804
99.
Zurück zum Zitat Kim H, Chandran KB, Sacks MS, Lu J (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng 35(1):30–44 CrossRef Kim H, Chandran KB, Sacks MS, Lu J (2007) An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann Biomed Eng 35(1):30–44 CrossRef
100.
Zurück zum Zitat Li K, Sun W (2010) Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann Biomed Eng 38(8):2690–2701 CrossRef Li K, Sun W (2010) Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann Biomed Eng 38(8):2690–2701 CrossRef
101.
Zurück zum Zitat Burriesci G, Howard IC, Patterson EA (1999) Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol 23(6):203–215 CrossRef Burriesci G, Howard IC, Patterson EA (1999) Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol 23(6):203–215 CrossRef
102.
Zurück zum Zitat Huynh VL, Nguyen T, Lam HL, Guo XG, Kafesjian R (2003) Cloth-covered stents for tissue heart valves, US Patent 6,585,766 Huynh VL, Nguyen T, Lam HL, Guo XG, Kafesjian R (2003) Cloth-covered stents for tissue heart valves, US Patent 6,585,766
103.
Zurück zum Zitat Piazza N, Bleiziffer S, Brockmann G, Hendrick R, Deutsch MA, Opitz A, Mazzitelli D, Tassani-Prell P, Schreiber C, Lange R (2011) Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve. JACC 4(7):721–732 CrossRef Piazza N, Bleiziffer S, Brockmann G, Hendrick R, Deutsch MA, Opitz A, Mazzitelli D, Tassani-Prell P, Schreiber C, Lange R (2011) Transcatheter aortic valve implantation for failing surgical aortic bioprosthetic valve. JACC 4(7):721–732 CrossRef
104.
Zurück zum Zitat Gao ZB, Pandya S, Hosein N, Sacks MS, Hwang NHC (2000) Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J Biomech 33(2):199–207 CrossRef Gao ZB, Pandya S, Hosein N, Sacks MS, Hwang NHC (2000) Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J Biomech 33(2):199–207 CrossRef
105.
Zurück zum Zitat Gao BZ, Pandya S, Arana C, Hwang NHC (2002) Bioprosthetic heart valve leaflet deformation monitored by double-pulse stereo photogrammetry. Ann Biomed Eng 30(1):11–18 CrossRef Gao BZ, Pandya S, Arana C, Hwang NHC (2002) Bioprosthetic heart valve leaflet deformation monitored by double-pulse stereo photogrammetry. Ann Biomed Eng 30(1):11–18 CrossRef
106.
Zurück zum Zitat Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11): 963–973 CrossRef Iyengar AKS, Sugimoto H, Smith DB, Sacks MS (2001) Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann Biomed Eng 29(11): 963–973 CrossRef
107.
Zurück zum Zitat Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87 CrossRef Bellhouse BJ, Bellhouse FH (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87 CrossRef
108.
Zurück zum Zitat Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York MATH Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York MATH
109.
Zurück zum Zitat Kenner T (1989) The measurement of blood density and its meaning. Basic Res Cardiol 84(2):111–124 CrossRef Kenner T (1989) The measurement of blood density and its meaning. Basic Res Cardiol 84(2):111–124 CrossRef
110.
Zurück zum Zitat Rosencranz R, Bogen SA (2006) Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol 125: S78–S86 Rosencranz R, Bogen SA (2006) Clinical laboratory measurement of serum, plasma, and blood viscosity. Am J Clin Pathol 125: S78–S86
111.
Zurück zum Zitat Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2011) Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J Biomech Eng 133(6):061007 CrossRef Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2011) Experimental technique of measuring dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. J Biomech Eng 133(6):061007 CrossRef
Metadaten
Titel
Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models
verfasst von
Ming-Chen Hsu
David Kamensky
Fei Xu
Josef Kiendl
Chenglong Wang
Michael C. H. Wu
Joshua Mineroff
Alessandro Reali
Yuri Bazilevs
Michael S. Sacks
Publikationsdatum
01.06.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1166-x

Weitere Artikel der Ausgabe 6/2015

Computational Mechanics 6/2015 Zur Ausgabe