Skip to main content

2016 | OriginalPaper | Buchkapitel

18. Dynamic Balancing of Mobile Robots in Simulation and Real Environments

verfasst von : Adrian Boeing, Thomas Bräunl

Erschienen in: Dynamic Balancing of Mechanisms and Synthesizing of Parallel Robots

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transferring an evolved control system from a simulated environment to the physical world poses a number of challenges. One of the most challenging control tasks is to generate a stable walking gait for a bipedal robot. We describe a method using a combination of repetitive splines and genetic algorithms to evolve a simulated control system for a humanoid robot, which is subsequently transferred to a real robot hardware. Multiple dynamic simulation systems can be simultaneously employed to provide a valid range of simulation variance. This will result in a much smaller reality gap and ultimately in a more robust control algorithm for the real robot.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leger, C.: Darwin 2k: An Evolutionary Approach to Automated Design for Robotics. Kluwer Academic Publishers, Norwell, MA (2000)CrossRef Leger, C.: Darwin 2k: An Evolutionary Approach to Automated Design for Robotics. Kluwer Academic Publishers, Norwell, MA (2000)CrossRef
2.
Zurück zum Zitat Nolfi, S., Folreano, D.: Evolutionary Robotics. The MIT Press, Cambridge, MA (2000) Nolfi, S., Folreano, D.: Evolutionary Robotics. The MIT Press, Cambridge, MA (2000)
3.
Zurück zum Zitat Law, A.M., Kelton, D.: Simulation Modelling and Analysis, 3rd edn. McGraw-Hill, New York (2000) Law, A.M., Kelton, D.: Simulation Modelling and Analysis, 3rd edn. McGraw-Hill, New York (2000)
4.
Zurück zum Zitat Jacobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. Proceedings of the Third European Conference on Advances in Artificial Life 929, 704–720 (1995)CrossRef Jacobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation in evolutionary robotics. Proceedings of the Third European Conference on Advances in Artificial Life 929, 704–720 (1995)CrossRef
5.
Zurück zum Zitat Brooks, R.A.: Artificial life and real robots. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, 1992, pp. 3–10 Brooks, R.A.: Artificial life and real robots. In: Toward a Practice of Autonomous Systems: Proceedings of the First European Conference on Artificial Life, 1992, pp. 3–10
6.
Zurück zum Zitat Jakobi, N.: Minimal simulations for evolutionary robotics. PhD Thesis, University of Sussex, Sussex (1998) Jakobi, N.: Minimal simulations for evolutionary robotics. PhD Thesis, University of Sussex, Sussex (1998)
7.
Zurück zum Zitat Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)CrossRef Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real environments. Artif. Life 2(4), 417–434 (1995)CrossRef
8.
Zurück zum Zitat Hornby, G.S, Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, 2000, pp. 3040–3045 Hornby, G.S, Takamura, S., Yokono, J., Hanagata, O., Yamamoto, T., Fujita, M.: Evolving robust gaits with AIBO. In: IEEE International Conference on Robotics and Automation, 2000, pp. 3040–3045
9.
Zurück zum Zitat Zagal, C., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: crossing the reality gap in evolutionary robotics. In: Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004 Zagal, C., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: crossing the reality gap in evolutionary robotics. In: Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004
10.
Zurück zum Zitat Zagal, C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary robotics. J. Intell. Robot. Syst. 50(1), 19–39 (2007)CrossRef Zagal, C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary robotics. J. Intell. Robot. Syst. 50(1), 19–39 (2007)CrossRef
11.
Zurück zum Zitat Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of models and tests. IEEE Trans. Evol. Comput. 9(4), 361–384 (2005)CrossRef Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of models and tests. IEEE Trans. Evol. Comput. 9(4), 361–384 (2005)CrossRef
12.
Zurück zum Zitat Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer graphics and Interactive Techniques in Australia and Southeast Asia, 2007, pp. 281–288 Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer graphics and Interactive Techniques in Australia and Southeast Asia, 2007, pp. 281–288
13.
Zurück zum Zitat Boeing, A., Bräunl, T.: Evolving splines: an alternative locomotion controller for a bipedal robot. In: Proceedings of the Seventh International Conference on Control Automation, Robotics and Vision (ICARCV 2002), 2002 Boeing, A., Bräunl, T.: Evolving splines: an alternative locomotion controller for a bipedal robot. In: Proceedings of the Seventh International Conference on Control Automation, Robotics and Vision (ICARCV 2002), 2002
14.
Zurück zum Zitat Ziegler J, Banzhaf, W.: Evolution of robot leg movements in a physical simulation. In: Proceedings of the Fourth International Conference on Climbing and Walking Robots, CLAWAR, 2001 Ziegler J, Banzhaf, W.: Evolution of robot leg movements in a physical simulation. In: Proceedings of the Fourth International Conference on Climbing and Walking Robots, CLAWAR, 2001
15.
Zurück zum Zitat Ziegler, J., Barnholt, J., Bush, J., Banzhaf, W.: Automatic evolution of control programs for a small humanoid walking robot. In: 5th International Conference on Climbing and Walking Robots (CLAWAR), 2002 Ziegler, J., Barnholt, J., Bush, J., Banzhaf, W.: Automatic evolution of control programs for a small humanoid walking robot. In: 5th International Conference on Climbing and Walking Robots (CLAWAR), 2002
16.
Zurück zum Zitat A. Boeing: Design of a physics abstraction layer for improving the validity of evolved robot control simulations. Ph.D Dissertation, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, WA (2009) A. Boeing: Design of a physics abstraction layer for improving the validity of evolved robot control simulations. Ph.D Dissertation, School of Electrical, Electronic and Computer Engineering, The University of Western Australia, WA (2009)
19.
Zurück zum Zitat Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robotics Res. 2(1), 13–30 (1983)CrossRef Featherstone, R.: The calculation of robot dynamics using articulated-body inertias. Int. J. Robotics Res. 2(1), 13–30 (1983)CrossRef
20.
Zurück zum Zitat McMillan, S., Orin, D.E., McGhee, R.B.: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Trans. Syst. Man Cybernet. 25(8), 1194–1206 (1995)CrossRef McMillan, S., Orin, D.E., McGhee, R.B.: Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Trans. Syst. Man Cybernet. 25(8), 1194–1206 (1995)CrossRef
22.
Zurück zum Zitat Dorf, R.C., Bishop, R.H.: Modern control systems. Prentice-Hall, Upper Saddle River (2001) Dorf, R.C., Bishop, R.H.: Modern control systems. Prentice-Hall, Upper Saddle River (2001)
23.
Zurück zum Zitat Landee, R., Davis, D., Albrecht, A.: Electronics Designers’ Handbook. McGraw-Hill, New York (1977) Landee, R., Davis, D., Albrecht, A.: Electronics Designers’ Handbook. McGraw-Hill, New York (1977)
24.
Zurück zum Zitat Vukobratovic, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Hum. Robot. 1(1), 157–173 (2004)CrossRef Vukobratovic, M., Borovac, B.: Zero-moment point—thirty five years of its life. Int. J. Hum. Robot. 1(1), 157–173 (2004)CrossRef
25.
Zurück zum Zitat Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48, 457–484 (2007)CrossRef Kim, J.-Y., Park, I.-W., Oh, J.-H.: Walking control algorithm of biped humanoid robot on uneven and inclined floor. J. Intell. Robot. Syst. 48, 457–484 (2007)CrossRef
26.
Zurück zum Zitat Shih, C.-L., Lee, W.-Y., Wu, C.-P.: Planning and control of stable walking for a 3D bipedal robot. Int. J. Adv. Robot. Syst. 9(47), 10 (2012) Shih, C.-L., Lee, W.-Y., Wu, C.-P.: Planning and control of stable walking for a 3D bipedal robot. Int. J. Adv. Robot. Syst. 9(47), 10 (2012)
27.
Zurück zum Zitat Huy, T.D., Cuong, N., Phuong, N.: Control of biped robot with stable walking. Am. J. Eng. Res. 2(11), 129–150 (2013) Huy, T.D., Cuong, N., Phuong, N.: Control of biped robot with stable walking. Am. J. Eng. Res. 2(11), 129–150 (2013)
28.
Zurück zum Zitat Boeing, A., Bräunl, T.: SubSim: an autonomous underwater vehicle simulation package. Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005), 2006, pp. 33–38 Boeing, A., Bräunl, T.: SubSim: an autonomous underwater vehicle simulation package. Proceedings of the 3rd International Symposium on Autonomous Minirobots for Research and Edutainment (AMiRE 2005), 2006, pp. 33–38
29.
Zurück zum Zitat Bräunl, T., Boeing, A., Gonzalez, L., Koestler, A., Nguyen, M.: Design, modelling and simulation of an autonomous underwater vehicle. Int. J. Vehicle Auton. Syst. 4(2–4), 106–121 (2006)CrossRef Bräunl, T., Boeing, A., Gonzalez, L., Koestler, A., Nguyen, M.: Design, modelling and simulation of an autonomous underwater vehicle. Int. J. Vehicle Auton. Syst. 4(2–4), 106–121 (2006)CrossRef
30.
Zurück zum Zitat Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEE Trans. Evol. Comput. 9(3), 303–317 (2005)CrossRef
Metadaten
Titel
Dynamic Balancing of Mobile Robots in Simulation and Real Environments
verfasst von
Adrian Boeing
Thomas Bräunl
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-17683-3_18

Neuer Inhalt