Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2014

01.04.2014 | Research Article

Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model

verfasst von: Dong Jun, Zhang Guang-jun, Xie Yong, Yao Hong, Wang Jue

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Previous experimental work has shown that the firing rate of multiple time-scales of adaptation for single rat neocortical pyramidal neurons is consistent with fractional-order differentiation, and the fractional-order neuronal models depict the firing rate of neurons more verifiably than other models do. For this reason, the dynamic characteristics of the fractional-order Hindmarsh–Rose (HR) neuronal model were here investigated. The results showed several obvious differences in dynamic characteristic between the fractional-order HR neuronal model and an integer-ordered model. First, the fractional-order HR neuronal model displayed different firing modes (chaotic firing and periodic firing) as the fractional order changed when other parameters remained the same as in the integer-order model. However, only one firing mode is displayed in integer-order models with the same parameters. The fractional order is the key to determining the firing mode. Second, the Hopf bifurcation point of this fractional-order model, from the resting state to periodic firing, was found to be larger than that of the integer-order model. Third, for the state of periodically firing of fractional-order and integer-order HR neuron model, the firing frequency of the fractional-order neuronal model was greater than that of the integer-order model, and when the fractional order of the model decreased, the firing frequency increased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adomian G (1990) A review of the decomposition method and some recent result for nonlinear equation. Math Comput Model 13(7):17–43CrossRef Adomian G (1990) A review of the decomposition method and some recent result for nonlinear equation. Math Comput Model 13(7):17–43CrossRef
Zurück zum Zitat Ahmad W, Sprott JC (2003) Chaos in fractional-order autonomous nonlinear systems. Chaos Soliton Fract 16:339–351CrossRef Ahmad W, Sprott JC (2003) Chaos in fractional-order autonomous nonlinear systems. Chaos Soliton Fract 16:339–351CrossRef
Zurück zum Zitat Ahmed E, El-Sayed AMA, Elsaka HAA (2007) Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Math Anal Appl 325(1):542–553CrossRef Ahmed E, El-Sayed AMA, Elsaka HAA (2007) Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Math Anal Appl 325(1):542–553CrossRef
Zurück zum Zitat Charef A, Sun HH, Tsao YY (1992) Fractal system as represented by singularity function. IEEE Trans Automat Contr 37(9):1465–1470CrossRef Charef A, Sun HH, Tsao YY (1992) Fractal system as represented by singularity function. IEEE Trans Automat Contr 37(9):1465–1470CrossRef
Zurück zum Zitat Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of Fractional differential equations. Nonlinear Dyn 29:3–22CrossRef Diethelm K, Ford NJ, Freed AD (2002) A predictor–corrector approach for the numerical solution of Fractional differential equations. Nonlinear Dyn 29:3–22CrossRef
Zurück zum Zitat Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn 7(4):341–349PubMedCrossRef Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting synchronization in an excitable systems with chemical delayed coupling. Cogn Neurodyn 7(4):341–349PubMedCrossRef
Zurück zum Zitat Guang-jun Z, Jian-xue X (2005) Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model. Chaos Solitons Fractals 23(4):1439–1449CrossRef Guang-jun Z, Jian-xue X (2005) Stochastic resonance induced by novel random transitions of motion of FitzHugh-Nagumo neuron model. Chaos Solitons Fractals 23(4):1439–1449CrossRef
Zurück zum Zitat Hong-jie Y, Jian-hua P (2005) Chaotic control of the Hindmarsh–Rose model. Acta Biophys Sin 21(4):295–300 (in Chinese) Hong-jie Y, Jian-hua P (2005) Chaotic control of the Hindmarsh–Rose model. Acta Biophys Sin 21(4):295–300 (in Chinese)
Zurück zum Zitat Ivo Petráš (2011) Fractional-order nonlinear systems. High Education Press, p 1–3 Ivo Petráš (2011) Fractional-order nonlinear systems. High Education Press, p 1–3
Zurück zum Zitat Li CP, Peng GJ (2004) Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2):443–450CrossRef Li CP, Peng GJ (2004) Chaos in Chen’s system with a fractional order. Chaos Solitons Fractals 22(2):443–450CrossRef
Zurück zum Zitat Liu Y (2010) Dynamical characteristics of the fractional-order model neuron and its synchronization[D].Xi’an: Xi’an Jiao tong University (in Chinese) Liu Y (2010) Dynamical characteristics of the fractional-order model neuron and its synchronization[D].Xi’an: Xi’an Jiao tong University (in Chinese)
Zurück zum Zitat Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 1(11):1335–1342CrossRef Lundstrom BN, Higgs MH, Spain WJ, Fairhall AL (2008) Fractional differentiation by neocortical pyramidal neurons. Nat Neurosci 1(11):1335–1342CrossRef
Zurück zum Zitat Magin R (2004) Fractional calculus in bioengineering. Begell House, Inc., Redding Magin R (2004) Fractional calculus in bioengineering. Begell House, Inc., Redding
Zurück zum Zitat Mandelbrot BB (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Inf Theory 13:289–298CrossRef Mandelbrot BB (1967) Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans Inf Theory 13:289–298CrossRef
Zurück zum Zitat Perc M (2005) Spatial coherence resonance in excitable media. Phys Rev E 72:016207CrossRef Perc M (2005) Spatial coherence resonance in excitable media. Phys Rev E 72:016207CrossRef
Zurück zum Zitat Perc M, Marhl M (2005) Amplification of information transfer in excitable systems that reside in a steady state near a bifurcation point to complex oscillatory behavior. Phys Rev E 71:026229CrossRef Perc M, Marhl M (2005) Amplification of information transfer in excitable systems that reside in a steady state near a bifurcation point to complex oscillatory behavior. Phys Rev E 71:026229CrossRef
Zurück zum Zitat Perc M, Marhl M (2007) Noise-induced spatial dynamics in the presence of memory loss. Phys A 375(1):72–80CrossRef Perc M, Marhl M (2007) Noise-induced spatial dynamics in the presence of memory loss. Phys A 375(1):72–80CrossRef
Zurück zum Zitat Podlubny I (1999) Fractional Differentical Equations. Academic Press, San Diego. CA, p 18 Podlubny I (1999) Fractional Differentical Equations. Academic Press, San Diego. CA, p 18
Zurück zum Zitat Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21:016110PubMedCrossRef Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization transitions in a neuronal network of subnetworks. Chaos 21:016110PubMedCrossRef
Zurück zum Zitat Tavazoei MS, Haeri M (2007) Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Process 1(4):171–181CrossRef Tavazoei MS, Haeri M (2007) Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems. IET Signal Process 1(4):171–181CrossRef
Zurück zum Zitat Wang Q, Perc M, Duan Z, Chen G (2011a) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80:026206CrossRef Wang Q, Perc M, Duan Z, Chen G (2011a) Synchronization transitions on scale-free neuronal networks due to finite information transmission delays. Phys Rev E 80:026206CrossRef
Zurück zum Zitat Wang H, Wang Q, Qishao L, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7(2):121–131PubMedCrossRef Wang H, Wang Q, Qishao L, Zheng Y (2013) Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction. Cogn Neurodyn 7(2):121–131PubMedCrossRef
Zurück zum Zitat Yamada Y, Kashimori Y (2013) Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception. Cogn Neurodyn 7(1):23–38PubMedCentralPubMedCrossRef Yamada Y, Kashimori Y (2013) Neural mechanism of dynamic responses of neurons in inferior temporal cortex in face perception. Cogn Neurodyn 7(1):23–38PubMedCentralPubMedCrossRef
Zurück zum Zitat Yang ZQ, Lu QS, Li L (2006) The genesis of period-adding bursting without bursting-chaos in the chay mode. Chaos Soliton Fractals 27:689–697CrossRef Yang ZQ, Lu QS, Li L (2006) The genesis of period-adding bursting without bursting-chaos in the chay mode. Chaos Soliton Fractals 27:689–697CrossRef
Zurück zum Zitat Yong L, Yong X (2010) Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Phys Sin 59(3):2417–2455 (in Chinese) Yong L, Yong X (2010) Dynamical characteristics of the fractional-order FitzHugh-Nagumo model neuron and its synchronization. Acta Phys Sin 59(3):2417–2455 (in Chinese)
Zurück zum Zitat Zhang J-H, Qin P-P, Raisch J, Wang R-B (2013) Predictive modeling of human operator cognitive state via sparse and robust support vector machines. Cogn Neurodyn 7(5):40–395CrossRef Zhang J-H, Qin P-P, Raisch J, Wang R-B (2013) Predictive modeling of human operator cognitive state via sparse and robust support vector machines. Cogn Neurodyn 7(5):40–395CrossRef
Metadaten
Titel
Dynamic behavior analysis of fractional-order Hindmarsh–Rose neuronal model
verfasst von
Dong Jun
Zhang Guang-jun
Xie Yong
Yao Hong
Wang Jue
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2014
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-013-9273-x

Weitere Artikel der Ausgabe 2/2014

Cognitive Neurodynamics 2/2014 Zur Ausgabe

Neuer Inhalt