Skip to main content
Erschienen in: Wireless Networks 6/2019

24.05.2018

Dynamic energy-efficient resource allocation in wireless powered communication network

verfasst von: Jiangqi Hu, Qinghai Yang

Erschienen in: Wireless Networks | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the dynamic energy-efficient resource allocation and analyze delay in newly emerging wireless powered communication network (WPCN). Considering the time-varying channel and stochastic data arrivals, we formulate the resource allocation (i.e., time allocation and power control) problem as a dynamic stochastic optimization model, which maximizes the system energy efficiency (EE) subject to both the data queue stability and the harvested energy availability, and simultaneously satisfies a certain quality of service (QoS) in terms of delay. With the aid of fractional programming, Lyapunov optimization theory and Lagrange method, we solve the problem and propose an dynamic energy-efficient resource allocation algorithm (DEERAA), which does not require any prior distribution knowledge of the channel state information (CSI) or stochastic data arrivals. We find that the performance of EE and delay can be adjusted by a system control parameter V. The effectiveness of the proposed algorithm is demonstrated by the mathematical analysis and simulation results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Define an i.i.d algorithm as one that, at the beginning of each slot \(t \in \{0, 1, 2, \ldots \}\), choose a policy \(\mathbf P (t)\) by independently and probabilistically selecting \(\mathbf P \in A_{\tau (t)}\) according to some distribution that is the same for all slots t. Let \(\pmb {P^\omega }(t)\), \(t\in \{0, 1, 2, \ldots \}\) represent such an i.i.d algorithm, then \(W_A(t)\) and \(R_A(t)\) are also i.i.d over slots. \(A_{\tau (t)}\) denotes the set of all feasible power allocation options under \(\tau (t)\).
 
Literatur
1.
Zurück zum Zitat Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef Guo, J., Zhao, N., Yu, F. R., Liu, X., & Leung, V. C. M. (2017). Exploiting adversarial jamming signals for energy harvesting in interference networks. IEEE Transactions on Wireless Communications, 16(2), 1267–1280.CrossRef
2.
Zurück zum Zitat Guo, J., Zhao, N., Yu, F. R., Liu X., & Leung, V. C. M. (2016). Wireless energy harvesting in interference alignment networks with adversarial jammers. (2016) In 8th International conference on wireless communications & signal processing (WCSP), Yangzhou, pp. 1–5. Guo, J., Zhao, N., Yu, F. R., Liu X., & Leung, V. C. M. (2016). Wireless energy harvesting in interference alignment networks with adversarial jammers. (2016) In 8th International conference on wireless communications & signal processing (WCSP), Yangzhou, pp. 1–5.
3.
Zurück zum Zitat Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRef
4.
Zurück zum Zitat Chang, Z., et al. (2016). Energy efficient resource allocation for wireless power transfer enabled collaborative mobile clouds. IEEE Journal on Selected Areas in Communications, 34(12), 3438–3450.CrossRef Chang, Z., et al. (2016). Energy efficient resource allocation for wireless power transfer enabled collaborative mobile clouds. IEEE Journal on Selected Areas in Communications, 34(12), 3438–3450.CrossRef
5.
Zurück zum Zitat Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. in IEEE Transactions on Green Communications and Networking, 1(2), 121–130. Chang, Z., Wang, Z., Guo, X., Han, Z., & Ristaniemi, T. Energy-Efficient Resource Allocation for Wireless Powered Massive MIMO System With Imperfect CSI. in IEEE Transactions on Green Communications and Networking, 1(2), 121–130.
6.
Zurück zum Zitat Chang, Z., Gong, J., Ristaniemi, T., & Niu, Z. (2016). Energy-efficient resource allocation and user scheduling for collaborative mobile clouds with hybrid receivers. IEEE Transactions on Vehicular Technology, 65(12), 9834–9846.CrossRef Chang, Z., Gong, J., Ristaniemi, T., & Niu, Z. (2016). Energy-efficient resource allocation and user scheduling for collaborative mobile clouds with hybrid receivers. IEEE Transactions on Vehicular Technology, 65(12), 9834–9846.CrossRef
7.
Zurück zum Zitat Tang, J., So, D. K. C., Shojaeifard, A., Wong, K. K., & Wen, J. (2017). Joint antenna selection and spatial switching for energy efficient MIMO SWIPT system. IEEE Transactions on Wireless Communications, 16(7), 4754–4769.CrossRef Tang, J., So, D. K. C., Shojaeifard, A., Wong, K. K., & Wen, J. (2017). Joint antenna selection and spatial switching for energy efficient MIMO SWIPT system. IEEE Transactions on Wireless Communications, 16(7), 4754–4769.CrossRef
8.
Zurück zum Zitat Huang, K., & Lau, V. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef Huang, K., & Lau, V. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.CrossRef
9.
Zurück zum Zitat Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Transactions on Wireless Communications, 12(7), 3412–3427.CrossRef Ng, D. W. K., Lo, E. S., & Schober, R. (2013). Energy-efficient resource allocation in OFDMA systems with hybrid energy harvesting base station. IEEE Transactions on Wireless Communications, 12(7), 3412–3427.CrossRef
10.
Zurück zum Zitat Nintanavongsa, P., et al. (2012). Design optimization and implementation for RF energy harvesting circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24–33.CrossRef Nintanavongsa, P., et al. (2012). Design optimization and implementation for RF energy harvesting circuits. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2(1), 24–33.CrossRef
11.
Zurück zum Zitat Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2016). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Communications, 16(10), 913–923. Kim, J., Lee, H., Song, C., Oh, T., & Lee, I. (2016). Sum throughput maximization for multi-user MIMO cognitive wireless powered communication networks. IEEE Transactions on Communications, 16(10), 913–923.
12.
Zurück zum Zitat Lee, H., Lee, K. J., Kim, H., Clerckx, B., & Lee, I. (2016). Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Transactions on Wireless Communications, 15(4):2619-2628. Lee, H., Lee, K. J., Kim, H., Clerckx, B., & Lee, I. (2016). Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Transactions on Wireless Communications, 15(4):2619-2628.
13.
Zurück zum Zitat Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62(2), 638–647.CrossRef Li, H., Song, L., & Debbah, M. (2014). Energy efficiency of large-scale multiple antenna systems with transmit antenna selection. IEEE Transactions on Communications, 62(2), 638–647.CrossRef
14.
Zurück zum Zitat Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778.CrossRef Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2012). Energy-efficient resource allocation in OFDMA networks. IEEE Transactions on Communications, 60(12), 3767–3778.CrossRef
15.
Zurück zum Zitat Lin, X., Huang, L., Guo, C., Zhang, P., Huang, M., & Zhang, J. (2017). Energy-efficient resource allocation in TDMS-based wireless powered communication networks. IEEE Communications Letters, 21(4), 861–864.CrossRef Lin, X., Huang, L., Guo, C., Zhang, P., Huang, M., & Zhang, J. (2017). Energy-efficient resource allocation in TDMS-based wireless powered communication networks. IEEE Communications Letters, 21(4), 861–864.CrossRef
16.
Zurück zum Zitat Kim, W., & Yoon, W. (2016). Energy efficiency maximisation for WPCN with distributed massive MIMO system. Electronics Letters, 52(19), 1642–1644 9 15. Kim, W., & Yoon, W. (2016). Energy efficiency maximisation for WPCN with distributed massive MIMO system. Electronics Letters, 52(19), 1642–1644 9 15.
17.
Zurück zum Zitat Salem, A., & Hamdi, K. A., (2016). Wireless Power Transfer in Two-Way AF Relaying Networks. IEEE global communications conference (GLOBECOM). Washington, DC, 2016, 1–6. Salem, A., & Hamdi, K. A., (2016). Wireless Power Transfer in Two-Way AF Relaying Networks. IEEE global communications conference (GLOBECOM). Washington, DC, 2016, 1–6.
18.
Zurück zum Zitat Wu, Q., Chen, W., Kwan Ng, D. W., Li, J., & Schober, R. (2016). User-centric energy efficiency maximization for wireless powered communications. IEEE Transactions on Wireless Communications, 15(10), 6898–6912.CrossRef Wu, Q., Chen, W., Kwan Ng, D. W., Li, J., & Schober, R. (2016). User-centric energy efficiency maximization for wireless powered communications. IEEE Transactions on Wireless Communications, 15(10), 6898–6912.CrossRef
19.
Zurück zum Zitat Wu, Q., Tao, M., Kwan Ng, D. W., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications, 15(3), 2312–2327.CrossRef Wu, Q., Tao, M., Kwan Ng, D. W., Chen, W., & Schober, R. (2016). Energy-efficient resource allocation for wireless powered communication networks. IEEE Transactions on Wireless Communications, 15(3), 2312–2327.CrossRef
20.
Zurück zum Zitat Yang, J., Yang, Q., Kwak, K. S., & Rao, R. R. (2017). Power-delay tradeoff in wireless powered communication networks. IEEE Transactions on Vehicular Technology, 66(4), 3280–3292.CrossRef Yang, J., Yang, Q., Kwak, K. S., & Rao, R. R. (2017). Power-delay tradeoff in wireless powered communication networks. IEEE Transactions on Vehicular Technology, 66(4), 3280–3292.CrossRef
21.
Zurück zum Zitat Huang, W., Chen, H., Li, Y., & Vucetic, B. (2016). On the performance of multi-antenna wireless-powered communications with energy beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1801–1808.CrossRef Huang, W., Chen, H., Li, Y., & Vucetic, B. (2016). On the performance of multi-antenna wireless-powered communications with energy beamforming. IEEE Transactions on Vehicular Technology, 65(3), 1801–1808.CrossRef
22.
Zurück zum Zitat Li, Y., Sheng, M., & Shi, Y. (2014). Energy efficiency and delay tradeoff for time-varying and interference-free wireless networks.IEEE Transactions on Wireless Communications,13(11), pp. 5921–5931. Li, Y., Sheng, M., & Shi, Y. (2014). Energy efficiency and delay tradeoff for time-varying and interference-free wireless networks.IEEE Transactions on Wireless Communications,13(11), pp. 5921–5931.
23.
Zurück zum Zitat Peng, M., Yu, Y., Xiang, H., & Poor, H. V. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.CrossRef Peng, M., Yu, Y., Xiang, H., & Poor, H. V. (2016). Energy-efficient resource allocation optimization for multimedia heterogeneous cloud radio access networks. IEEE Transactions on Multimedia, 18(5), 879–892.CrossRef
24.
Zurück zum Zitat Kang, X., HO, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.CrossRef Kang, X., HO, C. K., & Sun, S. (2015). Full-duplex wireless-powered communication network with energy causality. IEEE Transactions on Wireless Communications, 14(10), 5539–5551.CrossRef
25.
Zurück zum Zitat Zhou, X., Ho, C. K., & Zhang, R. (2016). Wireless power meets energy harvesting: A joint energy allocation approach in OFDM-based system. IEEE Transactions on Wireless Communications, 15(5), 3481–3491.CrossRef Zhou, X., Ho, C. K., & Zhang, R. (2016). Wireless power meets energy harvesting: A joint energy allocation approach in OFDM-based system. IEEE Transactions on Wireless Communications, 15(5), 3481–3491.CrossRef
26.
Zurück zum Zitat Bersekas, D., & Gallager, R. (1987). Data Networks. Englewood Cliffs, NJ: Prentice-Hall. Bersekas, D., & Gallager, R. (1987). Data Networks. Englewood Cliffs, NJ: Prentice-Hall.
27.
Zurück zum Zitat Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2015). Energy-efficient transmission for wireless powered multiuser communication networks. 2015 IEEE International Conference on Communications (ICC), IEEE. pp. 154–159. Wu, Q., Tao, M., Ng, D. W. K., Chen, W., & Schober, R. (2015). Energy-efficient transmission for wireless powered multiuser communication networks. 2015 IEEE International Conference on Communications (ICC), IEEE. pp. 154–159.
28.
Zurück zum Zitat Bersekas, D., & Tsitaiklia, J. (1996). Neuro-dynamic programming. Belmont: Athena Scientific. Bersekas, D., & Tsitaiklia, J. (1996). Neuro-dynamic programming. Belmont: Athena Scientific.
30.
Zurück zum Zitat Neely, M. J. (2013). Dynamic optimization and learning for renewal systems. IEEE Transactions on Automatic Control, 58(1), 32–46.MathSciNetCrossRefMATH Neely, M. J. (2013). Dynamic optimization and learning for renewal systems. IEEE Transactions on Automatic Control, 58(1), 32–46.MathSciNetCrossRefMATH
31.
Zurück zum Zitat Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefMATH
32.
Zurück zum Zitat Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael: Morgan and Claypool.CrossRefMATH Neely, M. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael: Morgan and Claypool.CrossRefMATH
Metadaten
Titel
Dynamic energy-efficient resource allocation in wireless powered communication network
verfasst von
Jiangqi Hu
Qinghai Yang
Publikationsdatum
24.05.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1699-y

Weitere Artikel der Ausgabe 6/2019

Wireless Networks 6/2019 Zur Ausgabe

Neuer Inhalt