Skip to main content
Erschienen in: Continuum Mechanics and Thermodynamics 6/2020

21.03.2020 | Original Article

Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale

verfasst von: Serena Gambarelli, Joško Ožbolt

Erschienen in: Continuum Mechanics and Thermodynamics | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fracture of normal strength concrete cylinder under static and dynamic loading is studied numerically. 3D finite element simulations are carried out at macro- and meso-scale. At meso-scale the analysis is performed with and without accounting for the interface zone (IZ) between aggregate and mortar. Aggregate is assumed to be linear elastic, and mortar is modeled using rate-dependent microplane model. To better understand behavior of concrete under dynamic fracture in compression, a parametric study is carried out to investigate the influence of the volume fraction of the aggregate, the role of IZ, the influence of confinement at the loading surface, the role of concrete quality and the influence of the size of the test specimen. The comparison between meso-scale and macro-scale analysis shows that the macroscopic analysis is principally able to account for the major effects related to dynamic fracture of concrete. Dynamic resistance of concrete in compression (apparent strength) depends on a number of parameters, and it is mainly influenced by the inertia effects that are closely related to the load-induced damage. Finally, it is pointed out that dynamic increase factor for compressive strength (CDIF), such as currently defined in design codes, for relatively high loading rates does not represent the true material strength.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ožbolt, J., Bošniak, J., Sola, E.: Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int. J. Solids Struct. 50, 4270–4278 (2013)CrossRef Ožbolt, J., Bošniak, J., Sola, E.: Dynamic fracture of concrete compact tension specimen: experimental and numerical study. Int. J. Solids Struct. 50, 4270–4278 (2013)CrossRef
2.
Zurück zum Zitat Ožbolt, J., Sharma, A., Irhan, B., Sola, E.: Tensile behavior of concrete under high loading rates. Int. J. Impact Eng. 69, 55–68 (2014)CrossRef Ožbolt, J., Sharma, A., Irhan, B., Sola, E.: Tensile behavior of concrete under high loading rates. Int. J. Impact Eng. 69, 55–68 (2014)CrossRef
3.
Zurück zum Zitat Pająk, M.: The influence of the strain rate on the strength of concrete taking into account the experimental techniques. Archit. Civ. Eng. Environ. 3, 77–86 (2011) Pająk, M.: The influence of the strain rate on the strength of concrete taking into account the experimental techniques. Archit. Civ. Eng. Environ. 3, 77–86 (2011)
4.
Zurück zum Zitat Abrams, D.A.: Effect of rate of application of load on the compressive strength of concrete. ASTM J. 17, 364–377 (1917) Abrams, D.A.: Effect of rate of application of load on the compressive strength of concrete. ASTM J. 17, 364–377 (1917)
5.
Zurück zum Zitat Evans, R.H.: Effect of rate of loading on the mechanical properties of some materials. J. Inst. Civ. Eng. 18, 296–306 (1942)CrossRef Evans, R.H.: Effect of rate of loading on the mechanical properties of some materials. J. Inst. Civ. Eng. 18, 296–306 (1942)CrossRef
6.
Zurück zum Zitat Hughes, B.P., Watson, A.J.: Compressive strength and ultimate strain of concrete under impact loading. Mag. Concr. Res. 30(105), 189–199 (1978) CrossRef Hughes, B.P., Watson, A.J.: Compressive strength and ultimate strain of concrete under impact loading. Mag. Concr. Res. 30(105), 189–199 (1978) CrossRef
7.
Zurück zum Zitat Malvern, L.E., Ross, C.A.: Dynamic response of concrete and concrete structures. Second Annual Technical Report. AFOSR Contr. No. F49620-83-K007 (1985) Malvern, L.E., Ross, C.A.: Dynamic response of concrete and concrete structures. Second Annual Technical Report. AFOSR Contr. No. F49620-83-K007 (1985)
8.
Zurück zum Zitat Ross, C.A., Thompson, P.Y., Tedesco, J.W.: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater. J. 86, 475–481 (1989) Ross, C.A., Thompson, P.Y., Tedesco, J.W.: Split-Hopkinson pressure-bar tests on concrete and mortar in tension and compression. ACI Mater. J. 86, 475–481 (1989)
9.
Zurück zum Zitat Ross, C.A., Tedesco, J.W., Kuennen, S.T.: Effects of strain rate on concrete strength. ACI Mater. J. 91(1), 37–47 (1995) Ross, C.A., Tedesco, J.W., Kuennen, S.T.: Effects of strain rate on concrete strength. ACI Mater. J. 91(1), 37–47 (1995)
10.
Zurück zum Zitat Tedesco, J.W., Ross, C.A.: Strain-rate-dependent constitutive equations for concrete. ASME J. Press. Vessel Technol. 120, 398–405 (1998)CrossRef Tedesco, J.W., Ross, C.A.: Strain-rate-dependent constitutive equations for concrete. ASME J. Press. Vessel Technol. 120, 398–405 (1998)CrossRef
11.
Zurück zum Zitat Grote, D.L., Park, S.W., Zhou, M.: Dynamic behavior of concrete at high strain-rates and pressures: I. experimental characterization. Int. J. Impact Eng. 25, 869–886 (2001)CrossRef Grote, D.L., Park, S.W., Zhou, M.: Dynamic behavior of concrete at high strain-rates and pressures: I. experimental characterization. Int. J. Impact Eng. 25, 869–886 (2001)CrossRef
12.
Zurück zum Zitat Hao, Y., Hao, H., Jiang, G.P., Zhou, Y.: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests. Cem. Concr. Res. 52, 63–70 (2013)CrossRef Hao, Y., Hao, H., Jiang, G.P., Zhou, Y.: Experimental confirmation of some factors influencing dynamic concrete compressive strengths in high-speed impact tests. Cem. Concr. Res. 52, 63–70 (2013)CrossRef
13.
Zurück zum Zitat Chen, X., Wu, S., Zhou, J.: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr. Build. Mater. 47, 419–430 (2013)ADSCrossRef Chen, X., Wu, S., Zhou, J.: Experimental and modeling study of dynamic mechanical properties of cement paste, mortar and concrete. Constr. Build. Mater. 47, 419–430 (2013)ADSCrossRef
14.
Zurück zum Zitat Salloum, Y.A., Almusallam, T., Ibrahim, S.M., Abbas, H., Alsayed, S.: Rate dependent behavior and modeling of concrete based on SHPB. Cem. Concr. Compos. 55, 34–44 (2015)CrossRef Salloum, Y.A., Almusallam, T., Ibrahim, S.M., Abbas, H., Alsayed, S.: Rate dependent behavior and modeling of concrete based on SHPB. Cem. Concr. Compos. 55, 34–44 (2015)CrossRef
15.
Zurück zum Zitat Chen, X.W., Lv, T., Chen, G.: Experimental and Numerical Studies on the Dynamic Behaviors of Concrete Materials Based on the Waveform Features in SHPB Tests. EPJ Web of Conferences (DYMAT) (2018) Chen, X.W., Lv, T., Chen, G.: Experimental and Numerical Studies on the Dynamic Behaviors of Concrete Materials Based on the Waveform Features in SHPB Tests. EPJ Web of Conferences (DYMAT) (2018)
16.
Zurück zum Zitat Comite Euro-International du Beton. CEB-FIP model code 1990. Redwood Books, Trowbridge, (1993) Comite Euro-International du Beton. CEB-FIP model code 1990. Redwood Books, Trowbridge, (1993)
17.
Zurück zum Zitat Li, Q.M., Meng, H.: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids Struct. 40, 343–360 (2003)CrossRef Li, Q.M., Meng, H.: About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test. Int. J. Solids Struct. 40, 343–360 (2003)CrossRef
18.
Zurück zum Zitat Hao, Y., Hao, H., Li, Z.X.: Influence of end friction confinement on impact tests of concrete material at high strain rate. Int. J. Impact Eng. 60, 82–106 (2013)CrossRef Hao, Y., Hao, H., Li, Z.X.: Influence of end friction confinement on impact tests of concrete material at high strain rate. Int. J. Impact Eng. 60, 82–106 (2013)CrossRef
19.
Zurück zum Zitat Bishoff, P.H., Perry, S.H.: Compressive behavior of concrete at high strain rates. Mater. Struct. 24, 425–450 (1991)CrossRef Bishoff, P.H., Perry, S.H.: Compressive behavior of concrete at high strain rates. Mater. Struct. 24, 425–450 (1991)CrossRef
20.
Zurück zum Zitat Sharma, A., Ožbolt, J.: Influence of high loading rates on behavior of reinforced concrete beams with different aspect ratios—a numerical study. Eng. Struct. 79, 297–308 (2014)CrossRef Sharma, A., Ožbolt, J.: Influence of high loading rates on behavior of reinforced concrete beams with different aspect ratios—a numerical study. Eng. Struct. 79, 297–308 (2014)CrossRef
21.
Zurück zum Zitat Hao, Y., Hao, H., Li, Z.H.: Numerical analysis of lateral inertia confinement effects on impact test of concrete compressive material properties. Int. J. Prot. Struct. 1(1), 145–167 (2010)CrossRef Hao, Y., Hao, H., Li, Z.H.: Numerical analysis of lateral inertia confinement effects on impact test of concrete compressive material properties. Int. J. Prot. Struct. 1(1), 145–167 (2010)CrossRef
22.
Zurück zum Zitat Hao, Y., Hao, H.: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate. Int. J. Prot. Struct. 2(2), 177–206 (2011)CrossRef Hao, Y., Hao, H.: Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate. Int. J. Prot. Struct. 2(2), 177–206 (2011)CrossRef
23.
Zurück zum Zitat Hao, Y., Hao, H., Zhang, X.H.: Numerical analysis of concrete material properties at high strain rate under direct tension. Int. J. Impact Eng. 39, 51–62 (2012)CrossRef Hao, Y., Hao, H., Zhang, X.H.: Numerical analysis of concrete material properties at high strain rate under direct tension. Int. J. Impact Eng. 39, 51–62 (2012)CrossRef
24.
Zurück zum Zitat Zhou, X.Q., Hao, H.: Modelling of compressive behavior of concrete-like materials at high strain rate. Int. Solids Struct. 45, 4648–4661 (2008)CrossRef Zhou, X.Q., Hao, H.: Modelling of compressive behavior of concrete-like materials at high strain rate. Int. Solids Struct. 45, 4648–4661 (2008)CrossRef
25.
Zurück zum Zitat Zhang, M., Wu, H.J., Li, Q.M., Huang, F.L.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int. J. Impact Eng. 36, 1327–1334 (2009)CrossRef Zhang, M., Wu, H.J., Li, Q.M., Huang, F.L.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: experiments. Int. J. Impact Eng. 36, 1327–1334 (2009)CrossRef
26.
Zurück zum Zitat Li, Q.M., Lu, Y.B., Meng, H.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulation. Int. J. Impact Eng. 36, 1335–1345 (2009)CrossRef Li, Q.M., Lu, Y.B., Meng, H.: Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part II: numerical simulation. Int. J. Impact Eng. 36, 1335–1345 (2009)CrossRef
27.
Zurück zum Zitat Song, Z., Lu, Y.: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data. Int. J. Impact Eng. 46, 41–55 (2012)CrossRef Song, Z., Lu, Y.: Mesoscopic analysis of concrete under excessively high strain rate compression and implications on interpretation of test data. Int. J. Impact Eng. 46, 41–55 (2012)CrossRef
28.
Zurück zum Zitat Huang, Y.J., Yang, Z.J., Chen, X.W., Liu, G.H.: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int. J. Impact Eng. 97, 102–11 (2016)CrossRef Huang, Y.J., Yang, Z.J., Chen, X.W., Liu, G.H.: Monte Carlo simulations of meso-scale dynamic compressive behavior of concrete based on X-ray computed tomography images. Int. J. Impact Eng. 97, 102–11 (2016)CrossRef
29.
Zurück zum Zitat Lv, T.H., Chen, X.W., Chen, G.: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr. Build. Mater. 160, 744–764 (2018)CrossRef Lv, T.H., Chen, X.W., Chen, G.: The 3D meso-scale model and numerical tests of split Hopkinson pressure bar of concrete specimen. Constr. Build. Mater. 160, 744–764 (2018)CrossRef
30.
Zurück zum Zitat Tasong, W.A., Lynsdale, C.J., Cripps, J.C.: Aggregate-cement paste interface part I. Influence of aggregate geochemistry. Cem. Concr. Res. 29, 1019–1025 (1999)CrossRef Tasong, W.A., Lynsdale, C.J., Cripps, J.C.: Aggregate-cement paste interface part I. Influence of aggregate geochemistry. Cem. Concr. Res. 29, 1019–1025 (1999)CrossRef
31.
Zurück zum Zitat Xiao, J., Li, W., Sun, Z., Lange, D.A., Shah, S.P.: Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem. Concr. Compos. 37, 276–292 (2013)CrossRef Xiao, J., Li, W., Sun, Z., Lange, D.A., Shah, S.P.: Properties of interfacial transition zones in recycled aggregate concrete tested by nanoindentation. Cem. Concr. Compos. 37, 276–292 (2013)CrossRef
32.
Zurück zum Zitat Ožbolt, J.: MASA—Macroscopic Space Analysis. Internal Report, Institute für Werkstoffe im Bauwesen, Universität Stuttgart, Germany (1998) Ožbolt, J.: MASA—Macroscopic Space Analysis. Internal Report, Institute für Werkstoffe im Bauwesen, Universität Stuttgart, Germany (1998)
33.
Zurück zum Zitat Ožbolt, J., Sharma, A., Reinhardt, H.W.: Dynamic fracture of concrete—compact tension specimen. Int. J. Solids Struct. 48, 1534–1543 (2011)CrossRef Ožbolt, J., Sharma, A., Reinhardt, H.W.: Dynamic fracture of concrete—compact tension specimen. Int. J. Solids Struct. 48, 1534–1543 (2011)CrossRef
34.
Zurück zum Zitat Mondal, P., Shah, S.P., Marks, L.D.: Nanomechanical properties of interfacial transition zone in concrete. In: Proceedings of Nanotechnology in Construction, Vol 3, pp. 315–320. Springer (2009) Mondal, P., Shah, S.P., Marks, L.D.: Nanomechanical properties of interfacial transition zone in concrete. In: Proceedings of Nanotechnology in Construction, Vol 3, pp. 315–320. Springer (2009)
35.
Zurück zum Zitat Ožbolt, J., Li, Y., Kožar, I.: Microplane model for concrete with relaxed kinematic constraint. Int. J. Solids Struct. 38, 2683–2711 (2001)CrossRef Ožbolt, J., Li, Y., Kožar, I.: Microplane model for concrete with relaxed kinematic constraint. Int. J. Solids Struct. 38, 2683–2711 (2001)CrossRef
36.
Zurück zum Zitat Bažant, Z.P., Adley, M.D., Carol, I., Jirasek, M., Akers, S.A., Rohani, B., et al.: Large-strain generalization of microplane model for concrete and application. J. Eng. Mech. (ASCE) 126(9), 971–980 (2000a)CrossRef Bažant, Z.P., Adley, M.D., Carol, I., Jirasek, M., Akers, S.A., Rohani, B., et al.: Large-strain generalization of microplane model for concrete and application. J. Eng. Mech. (ASCE) 126(9), 971–980 (2000a)CrossRef
37.
Zurück zum Zitat Bažant, Z.P., Caner, F.C., Adley, M.D., Akers, S.A.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. (ASCE) 126(9), 962–970 (2000b)CrossRef Bažant, Z.P., Caner, F.C., Adley, M.D., Akers, S.A.: Fracturing rate effect and creep in microplane model for dynamics. J. Eng. Mech. (ASCE) 126(9), 962–970 (2000b)CrossRef
38.
Zurück zum Zitat Dilger, W.H., Koch, R., Kowalczyk, R.: Ductility of Plain and Confined Concrete Under Different Strain Rates. American Concrete Institute. Special publication, Detroit (1978) Dilger, W.H., Koch, R., Kowalczyk, R.: Ductility of Plain and Confined Concrete Under Different Strain Rates. American Concrete Institute. Special publication, Detroit (1978)
39.
Zurück zum Zitat Bažant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete. Mater. Struct. RILEM 16(93), 155–177 (1983) Bažant, Z.P., Oh, B.H.: Crack band theory for fracture of concrete. Mater. Struct. RILEM 16(93), 155–177 (1983)
40.
Zurück zum Zitat Zhang, S., Zhang, C., Liao, L., Wang, C.: Numerical study of the effect of ITZ on the failure behavior of concrete by using particle element modelling. Constr. Build. Mater. 170, 776–789 (2018)CrossRef Zhang, S., Zhang, C., Liao, L., Wang, C.: Numerical study of the effect of ITZ on the failure behavior of concrete by using particle element modelling. Constr. Build. Mater. 170, 776–789 (2018)CrossRef
41.
Zurück zum Zitat Wee, T., Chin, M.S., Mansur, M.A.: Stress-strain relationship of high-strength concrete in compression. J. Mater. Civ. Eng. 8(2), 70–76 (1996)CrossRef Wee, T., Chin, M.S., Mansur, M.A.: Stress-strain relationship of high-strength concrete in compression. J. Mater. Civ. Eng. 8(2), 70–76 (1996)CrossRef
Metadaten
Titel
Dynamic fracture of concrete in compression: 3D finite element analysis at meso- and macro-scale
verfasst von
Serena Gambarelli
Joško Ožbolt
Publikationsdatum
21.03.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Continuum Mechanics and Thermodynamics / Ausgabe 6/2020
Print ISSN: 0935-1175
Elektronische ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-020-00881-5

Weitere Artikel der Ausgabe 6/2020

Continuum Mechanics and Thermodynamics 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.