Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 6/2010

01.11.2010 | Original Paper

Dynamic Fracturing Simulation of Brittle Material using the Distinct Lattice Spring Method with a Full Rate-Dependent Cohesive Law

verfasst von: T. Kazerani, G. F. Zhao, J. Zhao

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 6/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A full rate-dependent cohesive law is implemented in the distinct lattice spring method (DLSM) to investigate the dynamic fracturing behavior of brittle materials. Both the spring ultimate deformation and spring strength are dependent on the spring deformation rate. From the simulation results, it is found that the dynamic crack propagation velocity can be well predicted by the DLSM through the implemented full rate-dependent cohesive law. Furthermore, a numerical investigation on dynamic branching is also conducted by using the DLSM code.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allen DH, Searcy CR (2001) Micromechanically-based model for predicting dynamic damage evolution in ductile polymers. Mech Mater 33(3):177–184CrossRef Allen DH, Searcy CR (2001) Micromechanically-based model for predicting dynamic damage evolution in ductile polymers. Mech Mater 33(3):177–184CrossRef
Zurück zum Zitat Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRef Barenblatt GI (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7:55–129CrossRef
Zurück zum Zitat Bedford A, Drumheller DS (1996) Introduction to elastic wave propagation. Wiley, New York Bedford A, Drumheller DS (1996) Introduction to elastic wave propagation. Wiley, New York
Zurück zum Zitat Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal re-meshing. Int J Numer Methods Eng 45(5):601–620CrossRef Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal re-meshing. Int J Numer Methods Eng 45(5):601–620CrossRef
Zurück zum Zitat Block G, Rubin M et al (2007) Simulations of dynamic crack propagation in brittle materials using nodal cohesive forces and continuum damage mechanics in the distinct element code LDEC. Int J Fract 144(3):131–147CrossRef Block G, Rubin M et al (2007) Simulations of dynamic crack propagation in brittle materials using nodal cohesive forces and continuum damage mechanics in the distinct element code LDEC. Int J Fract 144(3):131–147CrossRef
Zurück zum Zitat Broberg KB (1999) Cracks and fracture. Academic Press, New York Broberg KB (1999) Cracks and fracture. Academic Press, New York
Zurück zum Zitat Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938CrossRef Camacho GT, Ortiz M (1996) Computational modeling of impact damage in brittle materials. Int J Solids Struct 33(20–22):2899–2938CrossRef
Zurück zum Zitat Camacho GT, Ortiz M (1997) Adaptive Lagrangian modeling of ballistic penetration of metallic targets. Comput Methods Appl Mech Eng 142(3–4):269–301CrossRef Camacho GT, Ortiz M (1997) Adaptive Lagrangian modeling of ballistic penetration of metallic targets. Comput Methods Appl Mech Eng 142(3–4):269–301CrossRef
Zurück zum Zitat Costanzo F, Walton JR (1998) Numerical simulations of a dynamically propagating crack with a nonlinear cohesive zone. Int J Fract 91(4):373–389CrossRef Costanzo F, Walton JR (1998) Numerical simulations of a dynamically propagating crack with a nonlinear cohesive zone. Int J Fract 91(4):373–389CrossRef
Zurück zum Zitat Dally JW, Fourney WL et al (1985) On the uniqueness of the stress intensity factor—crack velocity relationship. Int J Fract 27(3–4):159–168CrossRef Dally JW, Fourney WL et al (1985) On the uniqueness of the stress intensity factor—crack velocity relationship. Int J Fract 27(3–4):159–168CrossRef
Zurück zum Zitat Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRef
Zurück zum Zitat Fineberg J (2006) The dynamic of rapidly moving tensile cracks in brittle amorphous material. In: Arun S (ed) Dynamic fracture mechanics. World Scientific, Singapore, pp 104–146 Fineberg J (2006) The dynamic of rapidly moving tensile cracks in brittle amorphous material. In: Arun S (ed) Dynamic fracture mechanics. World Scientific, Singapore, pp 104–146
Zurück zum Zitat Fineberg J, Gross SP et al (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457–460CrossRef Fineberg J, Gross SP et al (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457–460CrossRef
Zurück zum Zitat Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge Freund LB (1990) Dynamic fracture mechanics. Cambridge University Press, Cambridge
Zurück zum Zitat Ivankovic A, Pandya KC et al (2004) Crack growth predictions in polyethylene using measured traction-separation curves. Eng Fract Mech 71(4–6):657–668CrossRef Ivankovic A, Pandya KC et al (2004) Crack growth predictions in polyethylene using measured traction-separation curves. Eng Fract Mech 71(4–6):657–668CrossRef
Zurück zum Zitat Karedla RS, Reddy JN (2007) Modeling of crack tip high inertia zone in dynamic brittle fracture. Eng Fract Mech 74(13):2084–2098CrossRef Karedla RS, Reddy JN (2007) Modeling of crack tip high inertia zone in dynamic brittle fracture. Eng Fract Mech 74(13):2084–2098CrossRef
Zurück zum Zitat Kazerani T, Zhao J (2010) Simulation of dynamic fracturing in brittle materials using discrete element method and a full rate-dependent logic for cohesive contact. Eng Fract Mech (submitted) Kazerani T, Zhao J (2010) Simulation of dynamic fracturing in brittle materials using discrete element method and a full rate-dependent logic for cohesive contact. Eng Fract Mech (submitted)
Zurück zum Zitat Kubair DV, Geubelle PH et al (2003) Analysis of a rate-dependent cohesive model for dynamic crack propagation. Eng Fract Mech 70(5):685–704CrossRef Kubair DV, Geubelle PH et al (2003) Analysis of a rate-dependent cohesive model for dynamic crack propagation. Eng Fract Mech 70(5):685–704CrossRef
Zurück zum Zitat Lee Y, Prakash V (1999) Dynamic brittle fracture of high strength structural steels under conditions of plane strain. Int J Solids Struct 36(22):3293–3337CrossRef Lee Y, Prakash V (1999) Dynamic brittle fracture of high strength structural steels under conditions of plane strain. Int J Solids Struct 36(22):3293–3337CrossRef
Zurück zum Zitat Li YN, Bazant ZP (1997a) Cohesive crack with rate-dependent opening and visco-elasticity: I. Mathematical model and scaling. Int J Fract 86(3):247–265CrossRef Li YN, Bazant ZP (1997a) Cohesive crack with rate-dependent opening and visco-elasticity: I. Mathematical model and scaling. Int J Fract 86(3):247–265CrossRef
Zurück zum Zitat Li YN, Bazant ZP (1997b) Cohesive crack model with rate-dependent opening and visco-elasticity: II. Numerical algorithm, behavior and size effect. Int J Fract 86(3):267–288CrossRef Li YN, Bazant ZP (1997b) Cohesive crack model with rate-dependent opening and visco-elasticity: II. Numerical algorithm, behavior and size effect. Int J Fract 86(3):267–288CrossRef
Zurück zum Zitat Moes N, Dolbow J et al (1999) A finite element method for crack growth without re-meshing. Int J Numer Methods Eng 46(1):131–150CrossRef Moes N, Dolbow J et al (1999) A finite element method for crack growth without re-meshing. Int J Numer Methods Eng 46(1):131–150CrossRef
Zurück zum Zitat Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. In: Aliabadi MH (ed) Dynamic fracture mechanics, chap 1. Computational Mechanics Publications, Southampton, pp 1–60 Nishioka T (1995) Recent developments in computational dynamic fracture mechanics. In: Aliabadi MH (ed) Dynamic fracture mechanics, chap 1. Computational Mechanics Publications, Southampton, pp 1–60
Zurück zum Zitat Nishioka T, Tokudome H et al (2001) Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. Int J Solids Struct 38(30–31):5273–5301CrossRef Nishioka T, Tokudome H et al (2001) Dynamic fracture-path prediction in impact fracture phenomena using moving finite element method based on Delaunay automatic mesh generation. Int J Solids Struct 38(30–31):5273–5301CrossRef
Zurück zum Zitat Pandolfi A, Krysl P et al (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297CrossRef Pandolfi A, Krysl P et al (1999) Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. Int J Fract 95(1–4):279–297CrossRef
Zurück zum Zitat Pandolfi A, Guduru PR et al (2000) Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. Int J Solids Struct 37(27):3733–3760CrossRef Pandolfi A, Guduru PR et al (2000) Three dimensional cohesive-element analysis and experiments of dynamic fracture in C300 steel. Int J Solids Struct 37(27):3733–3760CrossRef
Zurück zum Zitat Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26(1):65–80CrossRef Ravi-Chandar K, Knauss WG (1984) An experimental investigation into dynamic fracture: II. Microstructural aspects. Int J Fract 26(1):65–80CrossRef
Zurück zum Zitat Ruiz G, Ortiz M et al (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Methods Eng 48(7):963–994CrossRef Ruiz G, Ortiz M et al (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Methods Eng 48(7):963–994CrossRef
Zurück zum Zitat Sharon E, Gross SP et al (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120CrossRef Sharon E, Gross SP et al (1996) Energy dissipation in dynamic fracture. Phys Rev Lett 76(12):2117–2120CrossRef
Zurück zum Zitat Shioya T, Zhou F (1995). Dynamic fracture toughness and crack propagation in brittle material. In: Constitutive relation in high/very high strain rates, pp 105–112 Shioya T, Zhou F (1995). Dynamic fracture toughness and crack propagation in brittle material. In: Constitutive relation in high/very high strain rates, pp 105–112
Zurück zum Zitat Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434CrossRef Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434CrossRef
Zurück zum Zitat Xu XP, Needleman A (1995) Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int J Fract 74(3):253–275 Xu XP, Needleman A (1995) Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int J Fract 74(3):253–275
Zurück zum Zitat Xu XP, Needleman A (1996) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74(4):289–324CrossRef Xu XP, Needleman A (1996) Numerical simulations of dynamic crack growth along an interface. Int J Fract 74(4):289–324CrossRef
Zurück zum Zitat Xu C, Siegmund T et al (2003) Rate-dependent crack growth in adhesives: I. Modeling approach. Int J Adhes Adhes 23(1):9–13CrossRef Xu C, Siegmund T et al (2003) Rate-dependent crack growth in adhesives: I. Modeling approach. Int J Adhes Adhes 23(1):9–13CrossRef
Zurück zum Zitat Zhai J, Tomar V et al (2004) Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol 126(2):179–191CrossRef Zhai J, Tomar V et al (2004) Micromechanical simulation of dynamic fracture using the cohesive finite element method. J Eng Mater Technol 126(2):179–191CrossRef
Zurück zum Zitat Zhang ZN, Ge XR (2005) Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress. Theor Appl Fract Mech 43:342–359CrossRef Zhang ZN, Ge XR (2005) Micromechanical consideration of tensile crack behavior based on virtual internal bond in contrast to cohesive stress. Theor Appl Fract Mech 43:342–359CrossRef
Zurück zum Zitat Zhao GF (2010) Development of micro-macro continuum-discontinuum coupled numerical method, PhD thesis. EPFL Zhao GF (2010) Development of micro-macro continuum-discontinuum coupled numerical method, PhD thesis. EPFL
Zurück zum Zitat Zhao GF, Zhao J (2009) Microscopic numerical modeling of the dynamic strength of brittle rock. In: Proceedings of ICADD9 analysis of discontinuous deformation: new developments and applications, pp 633–640 Zhao GF, Zhao J (2009) Microscopic numerical modeling of the dynamic strength of brittle rock. In: Proceedings of ICADD9 analysis of discontinuous deformation: new developments and applications, pp 633–640
Zurück zum Zitat Zhao GF, Fang J, Zhao J (2010a) A 3D distinct lattice spring method for elasticity and dynamic failure. Int J Numer Anal Methods Geomech (submitted) Zhao GF, Fang J, Zhao J (2010a) A 3D distinct lattice spring method for elasticity and dynamic failure. Int J Numer Anal Methods Geomech (submitted)
Zurück zum Zitat Zhao GF, Fang J, Zhao J (2010b). A new microstructure-based constitutive model for failure modeling of elastic continuum. Eur J Mech Solid (submitted) Zhao GF, Fang J, Zhao J (2010b). A new microstructure-based constitutive model for failure modeling of elastic continuum. Eur J Mech Solid (submitted)
Zurück zum Zitat Zhou F (1996) Study on the macroscopic behavior and the microscopic process of dynamic crack propagation, PhD dissertation. The University of Tokyo, Tokyo Zhou F (1996) Study on the macroscopic behavior and the microscopic process of dynamic crack propagation, PhD dissertation. The University of Tokyo, Tokyo
Zurück zum Zitat Zhou F, Molinari JF (2004) Stochastic fracture of ceramics under dynamic tensile loading. Int J Solids Struct 41(22–23):6573–6596CrossRef Zhou F, Molinari JF (2004) Stochastic fracture of ceramics under dynamic tensile loading. Int J Solids Struct 41(22–23):6573–6596CrossRef
Zurück zum Zitat Zhou F, Molinari J-F et al (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410CrossRef Zhou F, Molinari J-F et al (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410CrossRef
Metadaten
Titel
Dynamic Fracturing Simulation of Brittle Material using the Distinct Lattice Spring Method with a Full Rate-Dependent Cohesive Law
verfasst von
T. Kazerani
G. F. Zhao
J. Zhao
Publikationsdatum
01.11.2010
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 6/2010
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-010-0099-0

Weitere Artikel der Ausgabe 6/2010

Rock Mechanics and Rock Engineering 6/2010 Zur Ausgabe

Editorial

Editorial