Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

15.05.2019

Dynamic Frictional Characteristics of TP2 Copper Tubes during Hydroforming under Different Loading and Fluid Velocities

verfasst von: Jianping Ma, Lianfa Yang, Yulin He

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Tube hydroforming (THF) experiments were performed on TP2 copper tubes under different loading velocities and fluid velocities using a self-developed measurement system to investigate dynamic frictional characteristics in the guiding zone. The results show that the coefficient of friction (COF) dynamically changes during forming experiments and decreases with tube deformation. The average descending rate and amplitude of the COF increase with increasing loading velocity. Microscopically, the micro-protrusions on the tubular surface are flattened, and the surface scratches are finer and more uniform, as the loading velocity increases, resulting in a decrease in COF. At the same external loading velocity, the COF increases with increasing fluid velocity and is also extremely sensitive to it. Moreover, improving and predicting the formability of such tubes by accurately adjusting and controlling fluid velocity in THF is valuable and critical for the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Kaya, Evaluating Porthole and Seamless Aluminum Tubes and Lubricants for Hydroforming, Int. J. Adv. Manuf. Technol., 2015, 77, p 807–817CrossRef S. Kaya, Evaluating Porthole and Seamless Aluminum Tubes and Lubricants for Hydroforming, Int. J. Adv. Manuf. Technol., 2015, 77, p 807–817CrossRef
2.
Zurück zum Zitat J.P. Ma and L.F. Yang, Measurement Methods of Friction Coefficient for Plastic Deformation of Metals under High Strain Rate, Mater. Sci. Forum, 2016, 878, p 127–131CrossRef J.P. Ma and L.F. Yang, Measurement Methods of Friction Coefficient for Plastic Deformation of Metals under High Strain Rate, Mater. Sci. Forum, 2016, 878, p 127–131CrossRef
3.
Zurück zum Zitat F. Forouhandeh, S. Kumar, and S.N. Ojha, Recent Development of Hydroforming-A Review, Int. J. Adv. Manuf. Syst., 2015, 15, p 27–36 F. Forouhandeh, S. Kumar, and S.N. Ojha, Recent Development of Hydroforming-A Review, Int. J. Adv. Manuf. Syst., 2015, 15, p 27–36
4.
Zurück zum Zitat S.J. Hashemi, H.M. Naeini, G. Liaghat, R.A. Tafti, and F. Rahmani, Numerical and Experimental Investigation of Temperature Effect on Thickness Distribution in Warm Hydroforming of Aluminum Tubes, J. Mater. Eng. Perform., 2013, 22(1), p 57–63CrossRef S.J. Hashemi, H.M. Naeini, G. Liaghat, R.A. Tafti, and F. Rahmani, Numerical and Experimental Investigation of Temperature Effect on Thickness Distribution in Warm Hydroforming of Aluminum Tubes, J. Mater. Eng. Perform., 2013, 22(1), p 57–63CrossRef
5.
Zurück zum Zitat A. Alaswad, K.Y. Benyounis, and A.G. Olabi, Tube Hydroforming Process: A Reference Guide, Mater. Des., 2012, 33, p 321–339CrossRef A. Alaswad, K.Y. Benyounis, and A.G. Olabi, Tube Hydroforming Process: A Reference Guide, Mater. Des., 2012, 33, p 321–339CrossRef
6.
Zurück zum Zitat K. Jin, Q. Guo, J. Tao, J. Tao, and X.Z. Guo, A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process, J. Mater. Eng. Perform., 2017, 26, p 5188–5196CrossRef K. Jin, Q. Guo, J. Tao, J. Tao, and X.Z. Guo, A Modified Isotropic-Kinematic Hardening Model to Predict the Defects in Tube Hydroforming Process, J. Mater. Eng. Perform., 2017, 26, p 5188–5196CrossRef
7.
Zurück zum Zitat M.F. Naghibi, M. Gerdooei, and M.B. Jooybari, Experimental and Numerical Study on Forming Limit Diagrams of 304 Stainless Steel Tubes in the Hydroforming Process, J. Mater. Eng. Perform., 2016, 25, p 5460–5467CrossRef M.F. Naghibi, M. Gerdooei, and M.B. Jooybari, Experimental and Numerical Study on Forming Limit Diagrams of 304 Stainless Steel Tubes in the Hydroforming Process, J. Mater. Eng. Perform., 2016, 25, p 5460–5467CrossRef
8.
Zurück zum Zitat L.F. Yang, H.S. Rong, and Y.L. He, Deformation Behavior of a Thin-Walled Tube in Hydroforming with Radial Crushing Under Pulsating Hydraulic Pressure, J. Mater. Eng. Perform., 2014, 23(2), p 429–438CrossRef L.F. Yang, H.S. Rong, and Y.L. He, Deformation Behavior of a Thin-Walled Tube in Hydroforming with Radial Crushing Under Pulsating Hydraulic Pressure, J. Mater. Eng. Perform., 2014, 23(2), p 429–438CrossRef
9.
Zurück zum Zitat M. Ahmetoglu and T. Altan, Tube Hydroforming: State-of-the-art and Future Trends, J. Mater. Process. Technol., 2000, 98(1), p 25–33CrossRef M. Ahmetoglu and T. Altan, Tube Hydroforming: State-of-the-art and Future Trends, J. Mater. Process. Technol., 2000, 98(1), p 25–33CrossRef
10.
Zurück zum Zitat M. Plancak, F. Vollertsen, and J. Woitschig, Analysis, Finite Element Simulation and Experimental Investigation of Friction in Tube Hydroforming, J. Mater. Process. Technol., 2005, 170, p 220–228CrossRef M. Plancak, F. Vollertsen, and J. Woitschig, Analysis, Finite Element Simulation and Experimental Investigation of Friction in Tube Hydroforming, J. Mater. Process. Technol., 2005, 170, p 220–228CrossRef
11.
Zurück zum Zitat M.A. Chowdhury, D.M. Nuruzzaman, A.H. Mia, and M.L. Rahaman, Friction Coefficient of Different Material Pairs under Different Normal Loads and Sliding Velocities, Tribology in Industry, 2012, 34, p 18–23 M.A. Chowdhury, D.M. Nuruzzaman, A.H. Mia, and M.L. Rahaman, Friction Coefficient of Different Material Pairs under Different Normal Loads and Sliding Velocities, Tribology in Industry, 2012, 34, p 18–23
12.
Zurück zum Zitat M. KocË and T. Altan, An Overall Review of the Tube Hydroforming (THF) Technology, J. Mater. Process. Technol., 2001, 108, p 384–393CrossRef M. KocË and T. Altan, An Overall Review of the Tube Hydroforming (THF) Technology, J. Mater. Process. Technol., 2001, 108, p 384–393CrossRef
13.
Zurück zum Zitat Y.M. Hwang, L.S. Huang, Friction Tests in Tube Hydroforming, Proc. IMechE., Part B: J. Eng. Manuf., 2005, 219(8), p 587–593 Y.M. Hwang, L.S. Huang, Friction Tests in Tube Hydroforming, Proc. IMechE., Part B: J. Eng. Manuf., 2005, 219(8), p 587–593
14.
Zurück zum Zitat M. Plancak and F. Vollertsen, A Contribution to Determining the Friction Coefficient in Hydroforming of Tubes, Lubr. Sci., 2010, 9, p 219–230 M. Plancak and F. Vollertsen, A Contribution to Determining the Friction Coefficient in Hydroforming of Tubes, Lubr. Sci., 2010, 9, p 219–230
15.
Zurück zum Zitat H.K. Yi, H.S. Yim, G.Y. Lee, S.M. Lee, G.S. Chung, and Y.H. Moon, Experimental Investigation of Friction Coefficient in Tube Hydroforming, Trans. Nonferrous Met. Soc. China, 2011, 21, p 194–198CrossRef H.K. Yi, H.S. Yim, G.Y. Lee, S.M. Lee, G.S. Chung, and Y.H. Moon, Experimental Investigation of Friction Coefficient in Tube Hydroforming, Trans. Nonferrous Met. Soc. China, 2011, 21, p 194–198CrossRef
16.
Zurück zum Zitat A. Fiorentino, E. Ceretti, and C. Giardini, Tube Hydroforming Compression Test for Friction Estimation-numerical Inverse Method, Application, and Analysis, Int. J. Adv. Manuf. Technol., 2013, 64(5–8), p 695–705CrossRef A. Fiorentino, E. Ceretti, and C. Giardini, Tube Hydroforming Compression Test for Friction Estimation-numerical Inverse Method, Application, and Analysis, Int. J. Adv. Manuf. Technol., 2013, 64(5–8), p 695–705CrossRef
17.
Zurück zum Zitat L.F. Yang, P. Lei, and C. Guo, The Influence of Friction on Forming Accuracy of Tubular Parts by Hydroforming with Radial Crushing, Adv. Mater. Res., 2011, 328–330, p 1386–1390 L.F. Yang, P. Lei, and C. Guo, The Influence of Friction on Forming Accuracy of Tubular Parts by Hydroforming with Radial Crushing, Adv. Mater. Res., 2011, 328–330, p 1386–1390
18.
Zurück zum Zitat L.F. Yang, C.L. Wu, and Y.L. He, Dynamic Frictional Characteristics for the Pulsating Hydroforming of Tubes, Int. J. Adv. Manuf. Technol., 2016, 86, p 347–357CrossRef L.F. Yang, C.L. Wu, and Y.L. He, Dynamic Frictional Characteristics for the Pulsating Hydroforming of Tubes, Int. J. Adv. Manuf. Technol., 2016, 86, p 347–357CrossRef
19.
Zurück zum Zitat M. Ahmadpour and O. Ghahraei, The Impact of Die Corner Radius and Friction Coefficient on Bulge Forming of T-shaped Copper Tubes using Finite-element Method and Experimental Analysis, Adv. Des. Manuf. Technol., 2017, 10, p 31–38 M. Ahmadpour and O. Ghahraei, The Impact of Die Corner Radius and Friction Coefficient on Bulge Forming of T-shaped Copper Tubes using Finite-element Method and Experimental Analysis, Adv. Des. Manuf. Technol., 2017, 10, p 31–38
20.
Zurück zum Zitat A. Abdelkefi, P. Malécot, N. Boudeau, N. Guermazi, and N. Haddar, Evaluation of the Friction Coefficient in Tube Hydroforming with the “Corner Filling Test” in a Square Section Die, Int. J. Adv. Manuf. Technol., 2017, 88, p 2265–2273CrossRef A. Abdelkefi, P. Malécot, N. Boudeau, N. Guermazi, and N. Haddar, Evaluation of the Friction Coefficient in Tube Hydroforming with the “Corner Filling Test” in a Square Section Die, Int. J. Adv. Manuf. Technol., 2017, 88, p 2265–2273CrossRef
21.
Zurück zum Zitat M. Sasso, A. Forcellese, M. Simoncini, D. Amodio, and E. Mancini, High Strain Rate Behaviour of AA7075 Aluminum alloy at Different Initial Temper States, Key Eng. Mater., 2015, 651-653, p 114–119CrossRef M. Sasso, A. Forcellese, M. Simoncini, D. Amodio, and E. Mancini, High Strain Rate Behaviour of AA7075 Aluminum alloy at Different Initial Temper States, Key Eng. Mater., 2015, 651-653, p 114–119CrossRef
22.
Zurück zum Zitat D. Cui, L. Zhang, K. Mylvaganam, W. Liu, and W. Xu, Nano-milling on Monocrystalline Copper: A Molecular Dynamics Simulation, Mach. Sci. Technol., 2017, 21, p 67–85CrossRef D. Cui, L. Zhang, K. Mylvaganam, W. Liu, and W. Xu, Nano-milling on Monocrystalline Copper: A Molecular Dynamics Simulation, Mach. Sci. Technol., 2017, 21, p 67–85CrossRef
23.
Zurück zum Zitat L. Daw-Kwei, Modeling of Surface Roughness Effect on Dry Contact Friction in Metal Forming, Int. J. Adv. Manuf. Technol., 2011, 57, p 575–584CrossRef L. Daw-Kwei, Modeling of Surface Roughness Effect on Dry Contact Friction in Metal Forming, Int. J. Adv. Manuf. Technol., 2011, 57, p 575–584CrossRef
24.
Zurück zum Zitat A. Anil Kumar, S. Satapathy, and D. Ravi Kumar, Effect of Sheet Thickness and Punch Roughness on Formability of Sheets in Hydromechanical Deep Drawing, J. Mater. Eng. Perform., 2010, 19(8), p 1150–1160 A. Anil Kumar, S. Satapathy, and D. Ravi Kumar, Effect of Sheet Thickness and Punch Roughness on Formability of Sheets in Hydromechanical Deep Drawing, J. Mater. Eng. Perform., 2010, 19(8), p 1150–1160
25.
Zurück zum Zitat H. Naceur, S. Ben-Elechi, J.L. Batoz, and C. Knopf-Lenoir, Response Surface Methodology for the Rapid Design of Aluminum Sheet Metal Forming Parameters, Mater. Des., 2008, 29(4), p 781–790CrossRef H. Naceur, S. Ben-Elechi, J.L. Batoz, and C. Knopf-Lenoir, Response Surface Methodology for the Rapid Design of Aluminum Sheet Metal Forming Parameters, Mater. Des., 2008, 29(4), p 781–790CrossRef
26.
Zurück zum Zitat P. Groche and A. Peter, Performance of Lubricants in Internal High Pressure Forming of Tubes, Adv. Technol. Plast., 2003, 44(507), p 382–384 P. Groche and A. Peter, Performance of Lubricants in Internal High Pressure Forming of Tubes, Adv. Technol. Plast., 2003, 44(507), p 382–384
27.
Zurück zum Zitat J.Y. Xia, Z.Z. Song, J. Li, S.H. Li, and G.Z. Yu, Experimental Research of Correlativity of Friction Coefficient to Vertical Pressure and Friction Velocity in New Material FPB, 2016 International Conference on Materials Science, Resource and Environmental Engineering, AIP Conference Proceedings, 1794, p. 060002 (2017) J.Y. Xia, Z.Z. Song, J. Li, S.H. Li, and G.Z. Yu, Experimental Research of Correlativity of Friction Coefficient to Vertical Pressure and Friction Velocity in New Material FPB, 2016 International Conference on Materials Science, Resource and Environmental Engineering, AIP Conference Proceedings, 1794, p. 060002 (2017)
Metadaten
Titel
Dynamic Frictional Characteristics of TP2 Copper Tubes during Hydroforming under Different Loading and Fluid Velocities
verfasst von
Jianping Ma
Lianfa Yang
Yulin He
Publikationsdatum
15.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04097-w

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.