Skip to main content

2015 | OriginalPaper | Buchkapitel

8. Dynamic Geochemical Models to Assess Deposition Impacts and Target Loads of Acidity for Soils and Surface Waters

verfasst von : Luc T. C. Bonten, Gert Jan Reinds, Jan E. Groenenberg, Wim de Vries, Maximilian Posch, Chris D. Evans, Salim Belyazid, Sabine Braun, Filip Moldan, Harald U. Sverdrup, Daniel Kurz

Erschienen in: Critical Loads and Dynamic Risk Assessments

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents four geochemical dynamic models (VSD, MAGIC, ForSAFE and SMARTml) that have been used to assess impacts of nitrogen and acidity inputs on soil and soil solution chemistry. These models differ in their complexity and description of some processes. Some models can be used to calculate effects on surface waters as well. For all models this chapter shows examples of site-scale applications at intensively monitored forested plots in the UK, Germany, Switzerland and Norway, illustrating the adequacy of the model behaviour. Impacts of legislated emission reductions and forest harvest scenarios on soil solution chemistry are illustrated with a MAGIC model application. Besides scenario analyses, dynamic models can also be used to determine target loads, i.e. the deposition to reach a prescribed condition within a given time frame. This chapter introduces the target load concept and presents target load calculations with the MAGIC and the VSD model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aber, J. D., & Federer, C. A. (1992). A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463–474.CrossRef Aber, J. D., & Federer, C. A. (1992). A generalized, lumped-parameter model of photosynthesis, evapotranspiration and net primary production in temperate and boreal forest ecosystems. Oecologia, 92, 463–474.CrossRef
Zurück zum Zitat Achermann, B., Rihm, B., & Kurz, D. (2008). Switzerland. In J.-P. Hettelingh, M. Posch, & J. Slootweg (Eds.), Critical load, Dynamic modelling and impact assessment in Europe. CCE Status Report 2008 (pp. 205–210). Bilthoven: Netherlands Environmental Assessment Agency (PBL). Achermann, B., Rihm, B., & Kurz, D. (2008). Switzerland. In J.-P. Hettelingh, M. Posch, & J. Slootweg (Eds.), Critical load, Dynamic modelling and impact assessment in Europe. CCE Status Report 2008 (pp. 205–210). Bilthoven: Netherlands Environmental Assessment Agency (PBL).
Zurück zum Zitat Aherne, J., Posch, M., Forsius, M., Lehtonen, A., & Härkönen, K. (2012). Impacts of forest biomass removal on soil nutrient status under climate change: A catchment-based modelling study for Finland. Biogeochemistry, 107, 471–488.CrossRef Aherne, J., Posch, M., Forsius, M., Lehtonen, A., & Härkönen, K. (2012). Impacts of forest biomass removal on soil nutrient status under climate change: A catchment-based modelling study for Finland. Biogeochemistry, 107, 471–488.CrossRef
Zurück zum Zitat Alcamo, J., Shaw, R., & Hordijk, L. (1990). The RAINS model of acidification. Dordrecht: Kluwer Academic. Alcamo, J., Shaw, R., & Hordijk, L. (1990). The RAINS model of acidification. Dordrecht: Kluwer Academic.
Zurück zum Zitat Alveteg, M. (1998). Dynamics of forest soil chemistry. PhD thesis, Lund, Sweden, Reports in Ecology and Environmental Engineering 3:1998, Department of Chemical Engineering II, Lund University. Alveteg, M. (1998). Dynamics of forest soil chemistry. PhD thesis, Lund, Sweden, Reports in Ecology and Environmental Engineering 3:1998, Department of Chemical Engineering II, Lund University.
Zurück zum Zitat Alveteg, M., Sverdrup, H., & Warfvinge, P. (1995). Regional assessment of the temporal trends in soil acidification in southern Sweden, using the SAFE model. Water Air and Soil Pollution, 85, 2509–2514.CrossRef Alveteg, M., Sverdrup, H., & Warfvinge, P. (1995). Regional assessment of the temporal trends in soil acidification in southern Sweden, using the SAFE model. Water Air and Soil Pollution, 85, 2509–2514.CrossRef
Zurück zum Zitat Alveteg, M., Kurz, D., & Becker, R. (2002). Incorporating nutrient content elasticity in the MAKEDEP model. In Reports in ecology and environmental engineering 1-2002 (pp. 52–67). Sweden: Lund University. Alveteg, M., Kurz, D., & Becker, R. (2002). Incorporating nutrient content elasticity in the MAKEDEP model. In Reports in ecology and environmental engineering 1-2002 (pp. 52–67). Sweden: Lund University.
Zurück zum Zitat Belyazid, S. (2006). Dynamic modelling of biogeochemical processes in forest ecosystems. Doctoral Thesis. Reports in Ecology and Environmental Engineering 2006:1, Sweden: Department of chemical Engineering, Lund University. Belyazid, S. (2006). Dynamic modelling of biogeochemical processes in forest ecosystems. Doctoral Thesis. Reports in Ecology and Environmental Engineering 2006:1, Sweden: Department of chemical Engineering, Lund University.
Zurück zum Zitat Belyazid, S., & Moldan, F. (2009). Use of integrated dynamic modelling to set critical loads for nitrogen deposition based on vegetation change—Pilot study at Gårdsjön. (Report B1875). Swedish Environmental Research Institute IVL. Belyazid, S., & Moldan, F. (2009). Use of integrated dynamic modelling to set critical loads for nitrogen deposition based on vegetation change—Pilot study at Gårdsjön. (Report B1875). Swedish Environmental Research Institute IVL.
Zurück zum Zitat Belyazid, S., Sverdrup, H., Kurz, D., & Braun, S. (2011). Exploring ground vegetation change for different deposition scenarios and methods for estimating critical loads or biodiversity using the ForSAFE-VEG model in Switzerland and Sweden. Water Air and Soil Pollution, 216, 289–317.CrossRef Belyazid, S., Sverdrup, H., Kurz, D., & Braun, S. (2011). Exploring ground vegetation change for different deposition scenarios and methods for estimating critical loads or biodiversity using the ForSAFE-VEG model in Switzerland and Sweden. Water Air and Soil Pollution, 216, 289–317.CrossRef
Zurück zum Zitat Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.CrossRef Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.CrossRef
Zurück zum Zitat Bonten, L., Mol, J., & Reinds, G. J. (2009). Dynamic modelling of effects of deposition on carbon sequestration and nitrogen availability: VSD plus and C and N dynamics (VSD+). In J. P. Hettelingh, M. Posch, & Slootweg J. (Eds.), Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe. CCE Status Report 2009 (pp. 69–73). Bilthoven: Netherlands Environmental Assessment Agency (PBL). Bonten, L., Mol, J., & Reinds, G. J. (2009). Dynamic modelling of effects of deposition on carbon sequestration and nitrogen availability: VSD plus and C and N dynamics (VSD+). In J. P. Hettelingh, M. Posch, & Slootweg J. (Eds.), Progress in the modelling of critical thresholds, impacts to plant species diversity and ecosystem services in Europe. CCE Status Report 2009 (pp. 69–73). Bilthoven: Netherlands Environmental Assessment Agency (PBL).
Zurück zum Zitat Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & De Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany. Environmental Pollution, 159, 2831–2839.CrossRef Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & De Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany. Environmental Pollution, 159, 2831–2839.CrossRef
Zurück zum Zitat Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985a). Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21, 51–63.CrossRef Cosby, B. J., Hornberger, G. M., Galloway, J. N., & Wright, R. F. (1985a). Modeling the effects of acid deposition: Assessment of a lumped parameter model of soil water and streamwater chemistry. Water Resources Research, 21, 51–63.CrossRef
Zurück zum Zitat Cosby, B. J., Wright, R. F., Hornberger, G. M., & Galloway, J. N. (1985b). Modeling the effects of acid deposition. Estimation of long-term water quality responses in a small forested catchment. Water Resources Research, 21, 1591–1601.CrossRef Cosby, B. J., Wright, R. F., Hornberger, G. M., & Galloway, J. N. (1985b). Modeling the effects of acid deposition. Estimation of long-term water quality responses in a small forested catchment. Water Resources Research, 21, 1591–1601.CrossRef
Zurück zum Zitat Cosby, B. J., Wright, R. F., & Gjessing, E. (1995). An acidification model (MAGIC) with organic acids evaluated using whole-catchment manipulations in Norway. Journal of Hydrology, 170, 101–122.CrossRef Cosby, B. J., Wright, R. F., & Gjessing, E. (1995). An acidification model (MAGIC) with organic acids evaluated using whole-catchment manipulations in Norway. Journal of Hydrology, 170, 101–122.CrossRef
Zurück zum Zitat Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.CrossRef Cosby, B. J., Ferrier, R. C., Jenkins, A., & Wright, R. F. (2001). Modelling the effects of acid deposition: Refinements, adjustments and inclusion of nitrogen dynamics in the MAGIC model. Hydrology and Earth System Sciences, 5, 499–517.CrossRef
Zurück zum Zitat De Vries, W., Posch, M., & Kämäri, J. (1989). Simulation of the long-term soil response to acid deposition in various buffer ranges. Water Air and Soil Pollution, 48, 349–390.CrossRef De Vries, W., Posch, M., & Kämäri, J. (1989). Simulation of the long-term soil response to acid deposition in various buffer ranges. Water Air and Soil Pollution, 48, 349–390.CrossRef
Zurück zum Zitat De Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J., & Sutton, M. A. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814–1823.CrossRef De Vries, W., Solberg, S., Dobbertin, M., Sterba, H., Laubhann, D., van Oijen, M., Evans, C., Gundersen, P., Kros, J., Wamelink, G. W. W., Reinds, G. J., & Sutton, M. A. (2009). The impact of nitrogen deposition on carbon sequestration by European forests and heathlands. Forest Ecology and Management, 258, 1814–1823.CrossRef
Zurück zum Zitat De Wit, H., & Wright, R. F. (2008). Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition. Ambio, 37, 56–63.CrossRef De Wit, H., & Wright, R. F. (2008). Projected stream water fluxes of NO3 and total organic carbon from the Storgama headwater catchment, Norway, under climate change and reduced acid deposition. Ambio, 37, 56–63.CrossRef
Zurück zum Zitat Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley. Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley.
Zurück zum Zitat Eary, L. E., Jenne, E. A., Vail, L. W., & Girvin, D. C. (1989). Numerical models for predicting watershed acidification. Archives of Environmental Contamination Toxicology, 18, 29–53.CrossRef Eary, L. E., Jenne, E. A., Vail, L. W., & Girvin, D. C. (1989). Numerical models for predicting watershed acidification. Archives of Environmental Contamination Toxicology, 18, 29–53.CrossRef
Zurück zum Zitat Evans, C. D. (2005). Modelling the effects of climate change on an acidic upland stream. Biogeochemistry, 74, 21–46.CrossRef Evans, C. D. (2005). Modelling the effects of climate change on an acidic upland stream. Biogeochemistry, 74, 21–46.CrossRef
Zurück zum Zitat Evans, C. D., Smart, S., Scott, W. A., Whittaker, J. A., Langan, S., Emmett, B. A., & Ashmore, M. (2004). Evaluation and development of dynamic models for soils and soil-plant systems. In B. A. Emmett & G. McShane (Eds.), Terrestrial umbrella final report. Bangor: Centre for Ecology and Hydrology. Evans, C. D., Smart, S., Scott, W. A., Whittaker, J. A., Langan, S., Emmett, B. A., & Ashmore, M. (2004). Evaluation and development of dynamic models for soils and soil-plant systems. In B. A. Emmett & G. McShane (Eds.), Terrestrial umbrella final report. Bangor: Centre for Ecology and Hydrology.
Zurück zum Zitat Evans, C. D., Caporn, S. J. M., Carroll, J. A., Pilkington, M. G., Wilson, D. B., Ray, N., & Cresswell, N. (2006). Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environmental Pollution, 143, 468–478.CrossRef Evans, C. D., Caporn, S. J. M., Carroll, J. A., Pilkington, M. G., Wilson, D. B., Ray, N., & Cresswell, N. (2006). Modelling nitrogen saturation and carbon accumulation in heathland soils under elevated nitrogen deposition. Environmental Pollution, 143, 468–478.CrossRef
Zurück zum Zitat Evans, C. D., Reynolds, B., Hinton, C., Hughes, S., Norris, D., Grant, S., & Williams, B. (2008). Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrology and Earth System Sciences, 12, 337–351.CrossRef Evans, C. D., Reynolds, B., Hinton, C., Hughes, S., Norris, D., Grant, S., & Williams, B. (2008). Effects of decreasing acid deposition and climate change on acid extremes in an upland stream. Hydrology and Earth System Sciences, 12, 337–351.CrossRef
Zurück zum Zitat Gherini, S. A., Mok, L., Hudson, R. J. M., Davis, G. F., Chen, C. W., & Goldstein, R. A. (1985). The ILWAS model: Formulation and application. Water Air and Soil Pollution, 26, 425–459. Gherini, S. A., Mok, L., Hudson, R. J. M., Davis, G. F., Chen, C. W., & Goldstein, R. A. (1985). The ILWAS model: Formulation and application. Water Air and Soil Pollution, 26, 425–459.
Zurück zum Zitat Gundersen, P., Emmet, B. A., Kjønaas, O. J., Koopmans, C., & Tietema, A. (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37–55.CrossRef Gundersen, P., Emmet, B. A., Kjønaas, O. J., Koopmans, C., & Tietema, A. (1998). Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data. Forest Ecology and Management, 101, 37–55.CrossRef
Zurück zum Zitat Helliwell, R. C., Aherne, J., MacDougall, G., Nisbet, T. R., Lawson, D., Cosby, B. J., & Evans, C. D. (2014). Past acidification and recovery of surface waters, soils and ecology in the United Kingdom: Prospects for the future under current deposition and land use protocols. Ecological Indicators, 37B, 396–411.CrossRef Helliwell, R. C., Aherne, J., MacDougall, G., Nisbet, T. R., Lawson, D., Cosby, B. J., & Evans, C. D. (2014). Past acidification and recovery of surface waters, soils and ecology in the United Kingdom: Prospects for the future under current deposition and land use protocols. Ecological Indicators, 37B, 396–411.CrossRef
Zurück zum Zitat Hettelingh, J.-P., & Posch, M. (1994). Critical loads and a dynamic assessment of ecosystem recovery. In Grasman, J. & G. Van Straten (Eds.), Predictability and nonlinear modelling in natural sciences and economics (pp. 439–446). Dordrecht: Kluwer Academic.CrossRef Hettelingh, J.-P., & Posch, M. (1994). Critical loads and a dynamic assessment of ecosystem recovery. In Grasman, J. & G. Van Straten (Eds.), Predictability and nonlinear modelling in natural sciences and economics (pp. 439–446). Dordrecht: Kluwer Academic.CrossRef
Zurück zum Zitat Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrasón, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air and Soil Pollution Focus, 7, 379–384.CrossRef Hettelingh, J.-P., Posch, M., Slootweg, J., Reinds, G. J., Spranger, T., & Tarrasón, L. (2007). Critical loads and dynamic modelling to assess European areas at risk of acidification and eutrophication. Water Air and Soil Pollution Focus, 7, 379–384.CrossRef
Zurück zum Zitat Jenkins, A., Cosby, B. J., Ferrier, R. F., Walker, T. A. B., & Miller, J. D. (1990). Modelling stream acidification in afforested catchments: An assessment of the relative effects of acid deposition and afforestation. Journal of Hydrology, 120, 163–181.CrossRef Jenkins, A., Cosby, B. J., Ferrier, R. F., Walker, T. A. B., & Miller, J. D. (1990). Modelling stream acidification in afforested catchments: An assessment of the relative effects of acid deposition and afforestation. Journal of Hydrology, 120, 163–181.CrossRef
Zurück zum Zitat Jenkins, A., Cosby, B. J., Ferrier, R. C., Larssen, T., & Posch, M. (2003). Assessing emission reduction targets with dynamic models: Deriving target load functions for use in integrated assessment. Hydrology and Earth System Sciences, 7, 609–617.CrossRef Jenkins, A., Cosby, B. J., Ferrier, R. C., Larssen, T., & Posch, M. (2003). Assessing emission reduction targets with dynamic models: Deriving target load functions for use in integrated assessment. Hydrology and Earth System Sciences, 7, 609–617.CrossRef
Zurück zum Zitat Kämäri, J., & Posch, M. (1987). Regional application of a simple lake acidification model to Northern Europe. In M. B. Beck (Ed.), Systems analysis in water quality management (pp. 73–84). Oxford: Pergamon Press. Kämäri, J., & Posch, M. (1987). Regional application of a simple lake acidification model to Northern Europe. In M. B. Beck (Ed.), Systems analysis in water quality management (pp. 73–84). Oxford: Pergamon Press.
Zurück zum Zitat Kauppi, P., Kämäri, J., Posch, M., Kauppi, L., & Matzner, E. (1986). Acidification of forest soils: Model developement and application for analyzing impacts of acidic deposition in Europe. Ecological Modelling, 33, 231–253.CrossRef Kauppi, P., Kämäri, J., Posch, M., Kauppi, L., & Matzner, E. (1986). Acidification of forest soils: Model developement and application for analyzing impacts of acidic deposition in Europe. Ecological Modelling, 33, 231–253.CrossRef
Zurück zum Zitat Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A-Physiochemical and Engineering Aspects, 151, 147–166.CrossRef Kinniburgh, D. G., van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A-Physiochemical and Engineering Aspects, 151, 147–166.CrossRef
Zurück zum Zitat Kopáček, J., Cosby, B. J., Majer, V., Stuchlik, E., & Vesely, J. (2003). Modelling reversibility of Central European mountain lakes from acidification: Part I—The Bohemian Forest. Hydrology and Earth System Sciences, 7, 494–509.CrossRef Kopáček, J., Cosby, B. J., Majer, V., Stuchlik, E., & Vesely, J. (2003). Modelling reversibility of Central European mountain lakes from acidification: Part I—The Bohemian Forest. Hydrology and Earth System Sciences, 7, 494–509.CrossRef
Zurück zum Zitat Kros, J., Reinds, G. J., De Vries, W., Latour, J. B., & Bollen, M. J. S. (1995). Modelling the response of terrestrial ecosystems to acidification and desiccation scenarios. Water Air and Soil Pollution, 85, 1101–1106.CrossRef Kros, J., Reinds, G. J., De Vries, W., Latour, J. B., & Bollen, M. J. S. (1995). Modelling the response of terrestrial ecosystems to acidification and desiccation scenarios. Water Air and Soil Pollution, 85, 1101–1106.CrossRef
Zurück zum Zitat Larssen, T., Huseby, R. B., Cosby, B. J., Høst, G., Høgåsen, T., & Aldrin, M. (2006). Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach. Environmental Science and Technology, 40, 7841–7847.CrossRef Larssen, T., Huseby, R. B., Cosby, B. J., Høst, G., Høgåsen, T., & Aldrin, M. (2006). Forecasting acidification effects using a Bayesian calibration and uncertainty propagation approach. Environmental Science and Technology, 40, 7841–7847.CrossRef
Zurück zum Zitat Larssen, T., Høgåsen, T., & Cosby, B. J. (2007). Impact of time series data on calibration and prediction uncertainty for a deterministic hydrogeochemical model. Ecological Modelling, 207, 22–33.CrossRef Larssen, T., Høgåsen, T., & Cosby, B. J. (2007). Impact of time series data on calibration and prediction uncertainty for a deterministic hydrogeochemical model. Ecological Modelling, 207, 22–33.CrossRef
Zurück zum Zitat Lindström, G., & Gardelin, M. (1992). Modelling groundwater response to acidification. In P. Sanden & P. Warfvinge (Eds.), Report from the Swedish integrated groundwater acidification project (pp. 33–36). Norrköping: Swedish Meteorological and Hydrological Institute (SMHI). Lindström, G., & Gardelin, M. (1992). Modelling groundwater response to acidification. In P. Sanden & P. Warfvinge (Eds.), Report from the Swedish integrated groundwater acidification project (pp. 33–36). Norrköping: Swedish Meteorological and Hydrological Institute (SMHI).
Zurück zum Zitat Majer, V., Cosby, B. J., Kopácek, J., Stuchlík, E., & Veselý, J. (2003). Modelling reversibility of Central European mountain lakes from acidification: Part I—The Bohemian forest. Hydrology and Earth System Sciences, 7, 494–509.CrossRef Majer, V., Cosby, B. J., Kopácek, J., Stuchlík, E., & Veselý, J. (2003). Modelling reversibility of Central European mountain lakes from acidification: Part I—The Bohemian forest. Hydrology and Earth System Sciences, 7, 494–509.CrossRef
Zurück zum Zitat Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air and Soil Pollution, 85, 611–616.CrossRef Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air and Soil Pollution, 85, 611–616.CrossRef
Zurück zum Zitat Meeussen, J. C. L. (2003). ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environmental Science and Technology, 37, 1175–1182.CrossRef Meeussen, J. C. L. (2003). ORCHESTRA: An object-oriented framework for implementing chemical equilibrium models. Environmental Science and Technology, 37, 1175–1182.CrossRef
Zurück zum Zitat Monteith, D. T., Evans, C. D., & Reynolds, B. (2000). Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processess, 14, 1745–1749.CrossRef Monteith, D. T., Evans, C. D., & Reynolds, B. (2000). Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processess, 14, 1745–1749.CrossRef
Zurück zum Zitat Nikolaidis, N. P., Schnoor, J. L., & Georgakakos, K. P. (1989). Modeling of long-term lake alkalinity responses to acid deposition. Journal of Water Pollution Control Federation, 61, 188–199. Nikolaidis, N. P., Schnoor, J. L., & Georgakakos, K. P. (1989). Modeling of long-term lake alkalinity responses to acid deposition. Journal of Water Pollution Control Federation, 61, 188–199.
Zurück zum Zitat Oulehle, F., Hofmeister, J., & Hruška, J. (2007). Modeling of the long-term effect of tree species (Norway spruce and European beech) on soil acidification in the Ore Mountains. Ecological Modelling, 204, 359–371.CrossRef Oulehle, F., Hofmeister, J., & Hruška, J. (2007). Modeling of the long-term effect of tree species (Norway spruce and European beech) on soil acidification in the Ore Mountains. Ecological Modelling, 204, 359–371.CrossRef
Zurück zum Zitat Oulehle, F., Cosby, B. J., Wright, R. F., Hruška, J., Kopáček, J., Krám, P., Evans, C. D., & Moldan, F. (2012). Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 165, 158–166.CrossRef Oulehle, F., Cosby, B. J., Wright, R. F., Hruška, J., Kopáček, J., Krám, P., Evans, C. D., & Moldan, F. (2012). Modelling soil nitrogen: The MAGIC model with nitrogen retention linked to carbon turnover using decomposer dynamics. Environmental Pollution, 165, 158–166.CrossRef
Zurück zum Zitat Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling and Software, 24, 329–340.CrossRef Posch, M., & Reinds, G. J. (2009). A very simple dynamic soil acidification model for scenario analyses and target load calculations. Environmental Modelling and Software, 24, 329–340.CrossRef
Zurück zum Zitat Posch, M., Hettelingh, J.-P., & Slootweg, J. (2003). Manual for dynamic modelling of soil response to atmospheric deposition. (RIVM report 259101 012). Bilthoven, The Netherlands: National Institute for Public Health and the Environment. Posch, M., Hettelingh, J.-P., & Slootweg, J. (2003). Manual for dynamic modelling of soil response to atmospheric deposition. (RIVM report 259101 012). Bilthoven, The Netherlands: National Institute for Public Health and the Environment.
Zurück zum Zitat Rogora, M., Marchetto, A., & Mosello, R. (2003). Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy). Hydrology and Earth System Sciences, 7, 540–551.CrossRef Rogora, M., Marchetto, A., & Mosello, R. (2003). Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy). Hydrology and Earth System Sciences, 7, 540–551.CrossRef
Zurück zum Zitat Rose, K. A., Cook, R. B., Brenkert, A. L., Gardner, R. H., & Hettelingh, J. P. (1991a). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models 1. Mapping among model inputs and deterministic results. Water Resources Research, 27, 2577–2589.CrossRef Rose, K. A., Cook, R. B., Brenkert, A. L., Gardner, R. H., & Hettelingh, J. P. (1991a). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models 1. Mapping among model inputs and deterministic results. Water Resources Research, 27, 2577–2589.CrossRef
Zurück zum Zitat Rose, K. A., Brenkert, A. L., Cook, R. B., Gardner, R. H., & Hettelingh, J.-P. (1991b). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models—2. Monte Carlo analysis under regional variability. Water Resources Research, 27, 2591–2603.CrossRef Rose, K. A., Brenkert, A. L., Cook, R. B., Gardner, R. H., & Hettelingh, J.-P. (1991b). Systematic comparison of ILWAS, MAGIC, and ETD watershed acidification models—2. Monte Carlo analysis under regional variability. Water Resources Research, 27, 2591–2603.CrossRef
Zurück zum Zitat Sjøeng, A.-M. S., Wright, R. F., & Kaste, Ø. (2009). Modelling seasonal nitrate concentrations in runoff of a heathland catchment in SW Norway using the MAGIC model: I. Calibration and specification of nitrogen processes. Hydrology Research, 40, 198–216.CrossRef Sjøeng, A.-M. S., Wright, R. F., & Kaste, Ø. (2009). Modelling seasonal nitrate concentrations in runoff of a heathland catchment in SW Norway using the MAGIC model: I. Calibration and specification of nitrogen processes. Hydrology Research, 40, 198–216.CrossRef
Zurück zum Zitat Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management at in Sweden 1500–2100 A.D. Water Air and Soil Pollution Focus, 7, 163–179.CrossRef Sverdrup, H., Belyazid, S., Nihlgård, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management at in Sweden 1500–2100 A.D. Water Air and Soil Pollution Focus, 7, 163–179.CrossRef
Zurück zum Zitat Tiktak, A., & van Grinsven, J. J. M. (1995). Review of sixteen forest-soil-atmosphere models. Ecological Modelling, 83, 35–54.CrossRef Tiktak, A., & van Grinsven, J. J. M. (1995). Review of sixteen forest-soil-atmosphere models. Ecological Modelling, 83, 35–54.CrossRef
Zurück zum Zitat Tominaga, K., Aherne, J., Watmough, S. A., Alveteg, M., Cosby, B. J., Driscoll, C. T., & Posch, M. (2009). Voyage without constellation: Evaluating the performance of three uncalibrated process-oriented models. HydrologyResearch, 40, 261–272. Tominaga, K., Aherne, J., Watmough, S. A., Alveteg, M., Cosby, B. J., Driscoll, C. T., & Posch, M. (2009). Voyage without constellation: Evaluating the performance of three uncalibrated process-oriented models. HydrologyResearch, 40, 261–272.
Zurück zum Zitat Ulrich, B. (1983). Soil acidity and its relations to acid deposition. In B. Ulrich & J. Pankrath (Eds.), Effects of accumulation of air pollutants in forest ecosystems (pp. 127–146). Dordrecht: Reidel Publ. Co.CrossRef Ulrich, B. (1983). Soil acidity and its relations to acid deposition. In B. Ulrich & J. Pankrath (Eds.), Effects of accumulation of air pollutants in forest ecosystems (pp. 127–146). Dordrecht: Reidel Publ. Co.CrossRef
Zurück zum Zitat Van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., & Kroes, J. G. (2008). Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7, 640–653.CrossRef Van Dam, J. C., Groenendijk, P., Hendriks, R. F. A., & Kroes, J. G. (2008). Advances of modeling water flow in variably saturated soils with SWAP. Vadose Zone Journal, 7, 640–653.CrossRef
Zurück zum Zitat Vanguelova, E., Benham, S., Pitman, R., Moffat, A. J., Broadmeadow, M., Nisbet, T., Durrant, D., Barsoum, N., Wilkinson, M., Bochereau, F., Hutchings, T., Broadmeadowa, S., Crow, P., Taylor, P., & Durrant Houston, T. (2010). Chemical fluxes in time through forest ecosystems in the UK—Soil response to pollution recovery. Environmental Pollution, 158, 1857–1869.CrossRef Vanguelova, E., Benham, S., Pitman, R., Moffat, A. J., Broadmeadow, M., Nisbet, T., Durrant, D., Barsoum, N., Wilkinson, M., Bochereau, F., Hutchings, T., Broadmeadowa, S., Crow, P., Taylor, P., & Durrant Houston, T. (2010). Chemical fluxes in time through forest ecosystems in the UK—Soil response to pollution recovery. Environmental Pollution, 158, 1857–1869.CrossRef
Zurück zum Zitat Wallman, P., Belyazid, S., Svensson, M. G. E., & Sverdrup, H. (2006). DECOMP—A semi-mechanistic model of litter decomposition. Environmental Modelling and Software, 21, 33–44.CrossRef Wallman, P., Belyazid, S., Svensson, M. G. E., & Sverdrup, H. (2006). DECOMP—A semi-mechanistic model of litter decomposition. Environmental Modelling and Software, 21, 33–44.CrossRef
Zurück zum Zitat Warfvinge, P., Holmberg, M., Posch, M., & Wright, R. F. (1992). The use of dynamic models to set target loads. Ambio, 21, 369–376. Warfvinge, P., Holmberg, M., Posch, M., & Wright, R. F. (1992). The use of dynamic models to set target loads. Ambio, 21, 369–376.
Zurück zum Zitat Wright, R. F., Larssen, T., Camarero, L., Cosby, B. J., Ferrier, R. C., Helliwell, R. C., Forsius, M., Jenkins, A., Kopáček, J., Majer, V., Moldan, F., Posch, M., Rogora, M., & Schöpp, W. (2005). Recovery of acidified European surface waters. Environmental Science and Technology, 39, 64A–72A.CrossRef Wright, R. F., Larssen, T., Camarero, L., Cosby, B. J., Ferrier, R. C., Helliwell, R. C., Forsius, M., Jenkins, A., Kopáček, J., Majer, V., Moldan, F., Posch, M., Rogora, M., & Schöpp, W. (2005). Recovery of acidified European surface waters. Environmental Science and Technology, 39, 64A–72A.CrossRef
Metadaten
Titel
Dynamic Geochemical Models to Assess Deposition Impacts and Target Loads of Acidity for Soils and Surface Waters
verfasst von
Luc T. C. Bonten
Gert Jan Reinds
Jan E. Groenenberg
Wim de Vries
Maximilian Posch
Chris D. Evans
Salim Belyazid
Sabine Braun
Filip Moldan
Harald U. Sverdrup
Daniel Kurz
Copyright-Jahr
2015
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-017-9508-1_8