Skip to main content
Erschienen in: The International Journal of Life Cycle Assessment 5/2017

10.11.2016 | WOOD AND OTHER RENEWABLE RESOURCES

Dynamic greenhouse gas accounting for cellulosic biofuels: implications of time based methodology decisions

verfasst von: Jesse Daystar, Richard Venditti, Stephen S. Kelley

Erschienen in: The International Journal of Life Cycle Assessment | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abtract

Purpose

Greenhouse gas (GHG) emissions resulting from biofuel production and use often occur over many different years. Nondynamic GHG accounting methods traditionally sum the global warming impacts (GWIs) occurring over a 100-year period for all emissions occurring in the life cycle regardless of emission timing. When examining biofuels from a policy perspective, time horizons are chosen to determine the benefits a policy or action has over a desired time period. It is critical to only account for impacts occurring within the given time period by having consistent temporal boundaries. When calculating the GWI as a function of time, additional assumptions and data are required. These assumptions have implications on the results and are explored herein to determine their influence on the overall conclusions when comparing biofuels made from different cellulosic feedstocks.

Materials and methods

The time zero assumption of both biomass planting and harvesting was examined. Analytical time horizon choice was also tested by examining results on a 25-, 50-, 100-, and 500-year time horizon. GWIs using dynamic GHG accounting methods were compared to nondynamic GWI method results. Direct land use change (LUC) emissions were determined for the different feedstock conversion scenarios and used to calculate a payback period for switchgrass and sweet sorghum biofuel scenarios. Dynamic biofuel life cycle emissions were also modeled for biofuel scenarios where LUC emissions were negative in the case of converting cropland to forests.

Results and discussion

Biofuel life cycle emissions and GHG reductions compared to gasoline were highly sensitive to GHG accounting methods and time horizons. The time zero assumption had greater influence on the results when shorter time horizons were chosen and decreased as time horizons approached 500 years. Using the dynamic GHG accounting method, LUC payback periods were determined to be greater compared to a 0 % emission discount method. Payback periods using a discount rate of 2 and 3 % were at times greater and less than dynamic GHG accounting method results.

Conclusions

The data presented herein suggest that time zero and other temporal emission timing assumptions are important and influence the overall study results. Analytical time horizons were also shown to be important and significantly influence the overall results, as well as be important to achieving carbon mitigation goals. Dynamic GHG accounting was shown to be a more robust method than the traditional static GWI accounting method ensuring consistent temporal boundaries; however, dynamic inventories require additional emission timing details and assumptions that require more effort and resources to model.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abt RC, Cubbage FW, Pacheco G (2000) Southern forest resource assessment using the subregional timber supply (SRTS) model. Forest Prod J 50(4):25–33 Abt RC, Cubbage FW, Pacheco G (2000) Southern forest resource assessment using the subregional timber supply (SRTS) model. Forest Prod J 50(4):25–33
Zurück zum Zitat Bauen A, Vuille F, Watson P, Vad K (2009) The RSB GHG accounting scheme. Feasibility of a metamethodology and way forward. Version 4.1 Bauen A, Vuille F, Watson P, Vad K (2009) The RSB GHG accounting scheme. Feasibility of a metamethodology and way forward. Version 4.1
Zurück zum Zitat Brandão M et al. (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240CrossRef Brandão M et al. (2013) Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting. Int J Life Cycle Assess 18(1):230–240CrossRef
Zurück zum Zitat Costa PM, Wilson C (2000) An equivalence factor between CO2 avoided emissions and sequestration–description and applications in forestry. Mitig Adapt Strateg Glob Chang 5(1):51–60CrossRef Costa PM, Wilson C (2000) An equivalence factor between CO2 avoided emissions and sequestration–description and applications in forestry. Mitig Adapt Strateg Glob Chang 5(1):51–60CrossRef
Zurück zum Zitat Daystar JS (2014) Environmental impacts of cellulosic biofuels made in the south east: implications of impact assessment methods and study assumptions Daystar JS (2014) Environmental impacts of cellulosic biofuels made in the south east: implications of impact assessment methods and study assumptions
Zurück zum Zitat Daystar J, Reeb C, Venditti R, Gonzalez R, Puettmann ME (2012) Life-cycle assessment of bioethanol from pine residues via indirect biomass gasification to mixed alcohols. Forest Prod J 62(4):314CrossRef Daystar J, Reeb C, Venditti R, Gonzalez R, Puettmann ME (2012) Life-cycle assessment of bioethanol from pine residues via indirect biomass gasification to mixed alcohols. Forest Prod J 62(4):314CrossRef
Zurück zum Zitat Daystar J, Gonzalez R, Reeb C, Venditti RA, Treasure T, Abt R, Kelley S (2013) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the southern US: pine, eucalyptus, unmanaged hardwoods, forest residues, switchgrass, and sweet sorghum. Bioresources 9(1):393–444CrossRef Daystar J, Gonzalez R, Reeb C, Venditti RA, Treasure T, Abt R, Kelley S (2013) Economics, environmental impacts, and supply chain analysis of cellulosic biomass for biofuels in the southern US: pine, eucalyptus, unmanaged hardwoods, forest residues, switchgrass, and sweet sorghum. Bioresources 9(1):393–444CrossRef
Zurück zum Zitat Daystar J, Reeb C, Gonzalez R, Venditti R, Kelley SS (2015a) Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Process Technol 138:164–174CrossRef Daystar J, Reeb C, Gonzalez R, Venditti R, Kelley SS (2015a) Environmental life cycle impacts of cellulosic ethanol in the southern US produced from loblolly pine, eucalyptus, unmanaged hardwoods, forest residues, and switchgrass using a thermochemical conversion pathway. Fuel Process Technol 138:164–174CrossRef
Zurück zum Zitat Daystar JS, Treasure T, Gonzalez R, Reeb C, Venditti R, Kelley S (2015b) The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. Bioresources 10(3):5096–5116CrossRef Daystar JS, Treasure T, Gonzalez R, Reeb C, Venditti R, Kelley S (2015b) The NREL biochemical and thermochemical ethanol conversion processes: financial and environmental analysis comparison. Bioresources 10(3):5096–5116CrossRef
Zurück zum Zitat Daystar J, Treasure T, Reeb C, Venditti R, Gonzalez R., Kelley S (2015c) Environmental impacts of bioethanol using the NREL biochemical conversion route: multivariate analysis and single score results. Biofuels, Bioproducts and Biorefining, 9(5):484–500 Daystar J, Treasure T, Reeb C, Venditti R, Gonzalez R., Kelley S (2015c) Environmental impacts of bioethanol using the NREL biochemical conversion route: multivariate analysis and single score results. Biofuels, Bioproducts and Biorefining, 9(5):484–500
Zurück zum Zitat Energy Independence and Security Act (2007) Energy Independence and Security Act (2007)
Zurück zum Zitat Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008). Land clearing and the biofuel carbon debt, Science 319(5867), 1235–1238. Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008). Land clearing and the biofuel carbon debt, Science 319(5867), 1235–1238.
Zurück zum Zitat Fearnside PM (2002) Why a 100-year time horizon should be used for global warming mitigation calculations. Mitig Adapt Strateg Glob Chang 7(1):19–30CrossRef Fearnside PM (2002) Why a 100-year time horizon should be used for global warming mitigation calculations. Mitig Adapt Strateg Glob Chang 7(1):19–30CrossRef
Zurück zum Zitat Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Girma B (2014) IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Field CB, Barros VR, Dokken DJ, Mach KJ, Mastrandrea MD, Bilir TE, Girma B (2014) IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
Zurück zum Zitat Galik CS, Abt RC (2015) Sustainability guidelines and forest market response: an assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy Galik CS, Abt RC (2015) Sustainability guidelines and forest market response: an assessment of European Union pellet demand in the southeastern United States. GCB Bioenergy
Zurück zum Zitat Galik CS, Abt R, Wu Y (2009) Forest biomass supply in the southeastern United States—implications for industrial roundwood and bioenergy production. J Forest 107(2):69–77 Galik CS, Abt R, Wu Y (2009) Forest biomass supply in the southeastern United States—implications for industrial roundwood and bioenergy production. J Forest 107(2):69–77
Zurück zum Zitat Gonzalez R, Daystar J, Jett M, Treasure T, Jameel H, Venditti R, Phillips R (2012) Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass. Fuel Processing Technology, 94(1):113–122 Gonzalez R, Daystar J, Jett M, Treasure T, Jameel H, Venditti R, Phillips R (2012) Economics of cellulosic ethanol production in a thermochemical pathway for softwood, hardwood, corn stover and switchgrass. Fuel Processing Technology, 94(1):113–122
Zurück zum Zitat Kendall A (2012) Time-adjusted global warming potentials for LCA and carbon footprints. Int J Life Cycle Assess 17(8):1042–1049CrossRef Kendall A (2012) Time-adjusted global warming potentials for LCA and carbon footprints. Int J Life Cycle Assess 17(8):1042–1049CrossRef
Zurück zum Zitat Kendall A, Chang B, Sharpe B (2009) Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ Sci Technol 43(18):7142–7147CrossRef Kendall A, Chang B, Sharpe B (2009) Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations. Environ Sci Technol 43(18):7142–7147CrossRef
Zurück zum Zitat Kirschbaum MU (2003) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy, 24(4):297–310 Kirschbaum MU (2003) To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass and Bioenergy, 24(4):297–310
Zurück zum Zitat Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2009) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44(8):3169–3174CrossRef Levasseur A, Lesage P, Margni M, Deschênes L, Samson R (2009) Considering time in LCA: dynamic LCA and its application to global warming impact assessments. Environ Sci Technol 44(8):3169–3174CrossRef
Zurück zum Zitat Levasseur A, Brandão M, Lesage P, Margni M, Pennington D, Clift R, Samson R (2011) Valuing temporary carbon storage. Nat Clim Chang 2(1):6–8CrossRef Levasseur A, Brandão M, Lesage P, Margni M, Pennington D, Clift R, Samson R (2011) Valuing temporary carbon storage. Nat Clim Chang 2(1):6–8CrossRef
Zurück zum Zitat Levasseur A, Lesage P, Margni M, Brandão M, Samson R (2012) Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Clim Chang 115(3–4):759–776CrossRef Levasseur A, Lesage P, Margni M, Brandão M, Samson R (2012) Assessing temporary carbon sequestration and storage projects through land use, land-use change and forestry: comparison of dynamic life cycle assessment with ton-year approaches. Clim Chang 115(3–4):759–776CrossRef
Zurück zum Zitat Levasseur A, Lesage P, Margni M, Samson R (2013) Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 17(1):117–128.100CrossRef Levasseur A, Lesage P, Margni M, Samson R (2013) Biogenic carbon and temporary storage addressed with dynamic life cycle assessment. J Ind Ecol 17(1):117–128.100CrossRef
Zurück zum Zitat Costa PM, Wilson C (2000) An equivalence factor between CO2 avoidedemissions and sequestration–description andapplications in forestry. Mitigation and adaptation strategies for global change, 5(1):51–60 Costa PM, Wilson C (2000) An equivalence factor between CO2 avoidedemissions and sequestration–description andapplications in forestry. Mitigation and adaptation strategies for global change, 5(1):51–60
Zurück zum Zitat Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. The International Journal of Life Cycle Assessment, 15(2):172–182 Müller-Wenk R, Brandão M (2010) Climatic impact of land use in LCA—carbon transfers between vegetation/soil and air. The International Journal of Life Cycle Assessment, 15(2):172–182
Zurück zum Zitat Nordhaus WD (2007) The challenge of global warming: economic models and environmental policy (Vol. 4). Yale University, New Haven Nordhaus WD (2007) The challenge of global warming: economic models and environmental policy (Vol. 4). Yale University, New Haven
Zurück zum Zitat O’Hare M, Plevin RJ, Martin JI, Jones AD, Kendall A, Hopson E (2009) Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum. Environ Res Lett 4(2):024001CrossRef O’Hare M, Plevin RJ, Martin JI, Jones AD, Kendall A, Hopson E (2009) Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum. Environ Res Lett 4(2):024001CrossRef
Zurück zum Zitat Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) IPCC, 2007: climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (2007) IPCC, 2007: climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change
Zurück zum Zitat Pennington DW, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rydberg T, Rebitzer G (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739CrossRef Pennington DW, Potting J, Finnveden G, Lindeijer E, Jolliet O, Rydberg T, Rebitzer G (2004) Life cycle assessment part 2: current impact assessment practice. Environ Int 30(5):721–739CrossRef
Zurück zum Zitat Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess 13(5):374–388CrossRef Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Int J Life Cycle Assess 13(5):374–388CrossRef
Zurück zum Zitat Searchinger T, Heimlich R, Hughton RA, Dong F, Elobeid A, Fabiosa J, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRef Searchinger T, Heimlich R, Hughton RA, Dong F, Elobeid A, Fabiosa J, Yu TH (2008) Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319(5867):1238–1240CrossRef
Zurück zum Zitat Shine KP (2009) The global warming potential—the need for an interdisciplinary retrial. Clim Chang 96(4):467–472CrossRef Shine KP (2009) The global warming potential—the need for an interdisciplinary retrial. Clim Chang 96(4):467–472CrossRef
Zurück zum Zitat Stern N (ed) (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge Stern N (ed) (2007) The economics of climate change: the Stern review. Cambridge University Press, Cambridge
Zurück zum Zitat Stocker DQ (2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers, IPCC Stocker DQ (2013) Climate change 2013: The physical science basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Summary for Policymakers, IPCC
Zurück zum Zitat Treasure T, Gonzalez R, Jameel H, Phillips RB, Park S Kelley S (2014) Integrated conversion, financial, and risk modeling of cellulosic ethanol from woody and non‐woody biomass via dilute acid pretreatment. Biofuels, Bioproducts and Biorefining, 8(6):755–769 Treasure T, Gonzalez R, Jameel H, Phillips RB, Park S Kelley S (2014) Integrated conversion, financial, and risk modeling of cellulosic ethanol from woody and non‐woody biomass via dilute acid pretreatment. Biofuels, Bioproducts and Biorefining, 8(6):755–769
Metadaten
Titel
Dynamic greenhouse gas accounting for cellulosic biofuels: implications of time based methodology decisions
verfasst von
Jesse Daystar
Richard Venditti
Stephen S. Kelley
Publikationsdatum
10.11.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
The International Journal of Life Cycle Assessment / Ausgabe 5/2017
Print ISSN: 0948-3349
Elektronische ISSN: 1614-7502
DOI
https://doi.org/10.1007/s11367-016-1184-8

Weitere Artikel der Ausgabe 5/2017

The International Journal of Life Cycle Assessment 5/2017 Zur Ausgabe

LCA FOR MANUFACTURING AND NANOTECHNOLOGY

LCA applied to nano scale zero valent iron synthesis