Skip to main content
Erschienen in: Computational Mechanics 1/2019

04.12.2018 | Original Paper

Dynamic homogenization of resonant elastic metamaterials with space/time modulation

verfasst von: Chenchen Liu, Celia Reina

Erschienen in: Computational Mechanics | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a variational multiscale strategy in the spirit of FE\(^2\) method for simulating the real time evolution of resonant elastic metamaterials with space/time modulation. The implicit time discretization used guarantees the stability of the numerical solution, while the accuracy is quantified by direct comparison with the response obtained via direct numerical simulation. The results showcase a remarkable accuracy of the method, even when the dynamic material properties drastically change over length scales that are equal to the macroscopic mesh size and time scales that are of the same order of magnitude than the external excitations. We further propose a strategy to identify the band gap structure of these metamaterials based on their real time response. The methodology is verified for spatially periodic time invariant systems via classical unit cell analyses in the frequency domain.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24MathSciNetCrossRefMATH Bangerth W, Hartmann R, Kanschat G (2007) deal.II—a general-purpose object-oriented finite element library. ACM Trans Math Softw (TOMS) 33(4):24MathSciNetCrossRefMATH
2.
Zurück zum Zitat Belytschko T, Hughes T (1983) Computational methods for transient analysis. Elsevier, North-HollandMATH Belytschko T, Hughes T (1983) Computational methods for transient analysis. Elsevier, North-HollandMATH
3.
Zurück zum Zitat Celli P, Yousefzadeh B, Daraio C, Gonella S (2018) Exploring heterogeneity and disorder in tunable elastic metamaterials. J Acoust Soc Am 143(3):1917–1917CrossRef Celli P, Yousefzadeh B, Daraio C, Gonella S (2018) Exploring heterogeneity and disorder in tunable elastic metamaterials. J Acoust Soc Am 143(3):1917–1917CrossRef
4.
Zurück zum Zitat Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183518CrossRef Chen H, Chan C (2007) Acoustic cloaking in three dimensions using acoustic metamaterials. Appl Phys Lett 91(18):183518CrossRef
5.
Zurück zum Zitat COMSOL Multiphysics 2017. v. 5.3. COMSOL AB, S.S. (2017) COMSOL Multiphysics 2017. v. 5.3. COMSOL AB, S.S. (2017)
6.
Zurück zum Zitat Cummer SA, Schurig D (2007) One path to acoustic cloaking. New J Phys 9(3):45CrossRef Cummer SA, Schurig D (2007) One path to acoustic cloaking. New J Phys 9(3):45CrossRef
7.
Zurück zum Zitat Deymier PA (2013) Acoustic metamaterials and phononic crystals, vol 173. Springer, BerlinCrossRef Deymier PA (2013) Acoustic metamaterials and phononic crystals, vol 173. Springer, BerlinCrossRef
8.
Zurück zum Zitat Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int J Numer Methods Eng 54(3):331–346MathSciNetCrossRefMATH Fish J, Chen W, Nagai G (2002) Non-local dispersive model for wave propagation in heterogeneous media: one-dimensional case. Int J Numer Methods Eng 54(3):331–346MathSciNetCrossRefMATH
9.
Zurück zum Zitat Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170):516–519CrossRef Fleury R, Sounas DL, Sieck CF, Haberman MR, Alù A (2014) Sound isolation and giant linear nonreciprocity in a compact acoustic circulator. Science 343(6170):516–519CrossRef
10.
Zurück zum Zitat Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621–633CrossRefMATH Gonella S, To AC, Liu WK (2009) Interplay between phononic bandgaps and piezoelectric microstructures for energy harvesting. J Mech Phys Solids 57(3):621–633CrossRefMATH
11.
Zurück zum Zitat Hu R, Oskay C (2018) Spatial-temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites. Comput Methods Appl Mech Eng 342:1–31MathSciNetCrossRef Hu R, Oskay C (2018) Spatial-temporal nonlocal homogenization model for transient anti-plane shear wave propagation in periodic viscoelastic composites. Comput Methods Appl Mech Eng 342:1–31MathSciNetCrossRef
12.
Zurück zum Zitat Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, Mineola Hughes TJ (2012) The finite element method: linear static and dynamic finite element analysis. Courier Dover Publications, Mineola
13.
Zurück zum Zitat Hughes TJ, Pister KS, Taylor RL (1979) Implicit–explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182CrossRefMATH Hughes TJ, Pister KS, Taylor RL (1979) Implicit–explicit finite elements in nonlinear transient analysis. Comput Methods Appl Mech Eng 17:159–182CrossRefMATH
14.
Zurück zum Zitat Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506CrossRef Hussein MI, Frazier MJ (2010) Band structure of phononic crystals with general damping. J Appl Phys 108(9):093506CrossRef
15.
Zurück zum Zitat Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767–4774CrossRef Hussein MI, Frazier MJ (2013) Metadamping: an emergent phenomenon in dissipative metamaterials. J Sound Vib 332(20):4767–4774CrossRef
16.
Zurück zum Zitat Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef Hussein MI, Leamy MJ, Ruzzene M (2014) Dynamics of phononic materials and structures: historical origins, recent progress, and future outlook. Appl Mech Rev 66(4):040802CrossRef
17.
Zurück zum Zitat Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(25–26):4197–4216CrossRef Javili A, Chatzigeorgiou G, Steinmann P (2013) Computational homogenization in magneto-mechanics. Int J Solids Struct 50(25–26):4197–4216CrossRef
18.
Zurück zum Zitat Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4(12):124308CrossRef Khajehtourian R, Hussein MI (2014) Dispersion characteristics of a nonlinear elastic metamaterial. AIP Adv 4(12):124308CrossRef
19.
Zurück zum Zitat Krödel S, Thomé N, Daraio C (2015) Wide band-gap seismic metastructures. Extreme Mech Lett 4:111–117CrossRef Krödel S, Thomé N, Daraio C (2015) Wide band-gap seismic metastructures. Extreme Mech Lett 4:111–117CrossRef
20.
Zurück zum Zitat Laude V (2015) Phononic crystals: artificial crystals for sonic, acoustic, and elastic waves, vol 26. Walter de Gruyter GmbH & Co KG, BerlinCrossRefMATH Laude V (2015) Phononic crystals: artificial crystals for sonic, acoustic, and elastic waves, vol 26. Walter de Gruyter GmbH & Co KG, BerlinCrossRefMATH
21.
Zurück zum Zitat Liu C, Reina C (2016) Discrete averaging relations for micro to macro transition. J Appl Mech 83(8):081006CrossRef Liu C, Reina C (2016) Discrete averaging relations for micro to macro transition. J Appl Mech 83(8):081006CrossRef
22.
Zurück zum Zitat Liu C, Reina C (2017) Variational coarse-graining procedure for dynamic homogenization. J Mech Phys Solids 104:187–206MathSciNetCrossRef Liu C, Reina C (2017) Variational coarse-graining procedure for dynamic homogenization. J Mech Phys Solids 104:187–206MathSciNetCrossRef
23.
Zurück zum Zitat Liu C, Reina C (2018) Broadband locally resonant metamaterials with graded hierarchical architecture. J Appl Phys 123(9):095108CrossRef Liu C, Reina C (2018) Broadband locally resonant metamaterials with graded hierarchical architecture. J Appl Phys 123(9):095108CrossRef
24.
Zurück zum Zitat Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef Liu Z, Zhang X, Mao Y, Zhu Y, Yang Z, Chan C, Sheng P (2000) Locally resonant sonic materials. Science 289(5485):1734–1736CrossRef
25.
Zurück zum Zitat Lv H, Tian X, Wang MY, Li D (2013) Vibration energy harvesting using a phononic crystal with point defect states. Appl Phys Lett 102(3):034103CrossRef Lv H, Tian X, Wang MY, Li D (2013) Vibration energy harvesting using a phononic crystal with point defect states. Appl Phys Lett 102(3):034103CrossRef
26.
Zurück zum Zitat Manimala JM, Sun C (2014) Microstructural design studies for locally dissipative acoustic metamaterials. J Appl Phys 115(2):023518CrossRef Manimala JM, Sun C (2014) Microstructural design studies for locally dissipative acoustic metamaterials. J Appl Phys 115(2):023518CrossRef
27.
Zurück zum Zitat Mercer B, Mandadapu KK, Papadopoulos P (2016) Homogenization of high-frequency wave propagation in linearly elastic layered media using a continuum Irving–Kirkwood theory. Int J Solids Struct 96:162–172CrossRef Mercer B, Mandadapu KK, Papadopoulos P (2016) Homogenization of high-frequency wave propagation in linearly elastic layered media using a continuum Irving–Kirkwood theory. Int J Solids Struct 96:162–172CrossRef
28.
Zurück zum Zitat Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50(10):2123–2167MathSciNetCrossRefMATH Miehe C, Schotte J, Lambrecht M (2002) Homogenization of inelastic solid materials at finite strains based on incremental minimization principles. Application to the texture analysis of polycrystals. J Mech Phys Solids 50(10):2123–2167MathSciNetCrossRefMATH
29.
Zurück zum Zitat Miehe C, Schröder J, Becker M (2002) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191(44):4971–5005MathSciNetCrossRefMATH Miehe C, Schröder J, Becker M (2002) Computational homogenization analysis in finite elasticity: material and structural instabilities on the micro-and macro-scales of periodic composites and their interaction. Comput Methods Appl Mech Eng 191(44):4971–5005MathSciNetCrossRefMATH
30.
Zurück zum Zitat Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418MathSciNetCrossRefMATH Miehe C, Schröder J, Schotte J (1999) Computational homogenization analysis in finite plasticity simulation of texture development in polycrystalline materials. Comput Methods Appl Mech Eng 171(3–4):387–418MathSciNetCrossRefMATH
31.
Zurück zum Zitat Milton GW, Willis JR (2007) On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A Math Phys Eng Sci 463(2079):855–880MathSciNetCrossRefMATH Milton GW, Willis JR (2007) On modifications of Newton’s second law and linear continuum elastodynamics. Proc R Soc A Math Phys Eng Sci 463(2079):855–880MathSciNetCrossRefMATH
32.
Zurück zum Zitat Molinari A, Mercier S (2001) Micromechanical modelling of porous materials under dynamic loading. J Mech Phys Solids 49(7):1497–1516CrossRefMATH Molinari A, Mercier S (2001) Micromechanical modelling of porous materials under dynamic loading. J Mech Phys Solids 49(7):1497–1516CrossRefMATH
33.
Zurück zum Zitat Nassar H, Chen H, Norris A, Haberman M, Huang G (2017) Non-reciprocal wave propagation in modulated elastic metamaterials. Proc R Soc A 473:20170188MathSciNetCrossRefMATH Nassar H, Chen H, Norris A, Haberman M, Huang G (2017) Non-reciprocal wave propagation in modulated elastic metamaterials. Proc R Soc A 473:20170188MathSciNetCrossRefMATH
34.
Zurück zum Zitat Nassar H, He QC, Auffray N (2015) Willis elastodynamic homogenization theory revisited for periodic media. J Mech Phys Solids 77:158–178MathSciNetCrossRefMATH Nassar H, He QC, Auffray N (2015) Willis elastodynamic homogenization theory revisited for periodic media. J Mech Phys Solids 77:158–178MathSciNetCrossRefMATH
35.
Zurück zum Zitat Nassar H, Xu X, Norris A, Huang G (2017) Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J Mech Phys Solids 101:10–29MathSciNetCrossRef Nassar H, Xu X, Norris A, Huang G (2017) Modulated phononic crystals: non-reciprocal wave propagation and Willis materials. J Mech Phys Solids 101:10–29MathSciNetCrossRef
36.
Zurück zum Zitat Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94 Newmark NM (1959) A method of computation for structural dynamics. J Eng Mech Div 85(3):67–94
37.
Zurück zum Zitat Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198(27–29):2099–2110CrossRefMATH Nezamabadi S, Yvonnet J, Zahrouni H, Potier-Ferry M (2009) A multilevel computational strategy for handling microscopic and macroscopic instabilities. Comput Methods Appl Mech Eng 198(27–29):2099–2110CrossRefMATH
38.
Zurück zum Zitat Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171(3):419–444MathSciNetCrossRefMATH Ortiz M, Stainier L (1999) The variational formulation of viscoplastic constitutive updates. Comput Methods Appl Mech Eng 171(3):419–444MathSciNetCrossRefMATH
39.
Zurück zum Zitat Özdemir I, Brekelmans W, Geers M (2008) FE-2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(3):602–613MathSciNetCrossRefMATH Özdemir I, Brekelmans W, Geers M (2008) FE-2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids. Comput Methods Appl Mech Eng 198(3):602–613MathSciNetCrossRefMATH
40.
Zurück zum Zitat Pham K, Kouznetsova V, Geers M (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61(11):2125–2146MathSciNetCrossRefMATH Pham K, Kouznetsova V, Geers M (2013) Transient computational homogenization for heterogeneous materials under dynamic excitation. J Mech Phys Solids 61(11):2125–2146MathSciNetCrossRefMATH
41.
Zurück zum Zitat Popa BI, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5:3398CrossRef Popa BI, Cummer SA (2014) Non-reciprocal and highly nonlinear active acoustic metamaterials. Nat Commun 5:3398CrossRef
42.
Zurück zum Zitat Radovitzky R, Ortiz M (1999) Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Eng 172(1):203–240MathSciNetCrossRefMATH Radovitzky R, Ortiz M (1999) Error estimation and adaptive meshing in strongly nonlinear dynamic problems. Comput Methods Appl Mech Eng 172(1):203–240MathSciNetCrossRefMATH
43.
Zurück zum Zitat Reina C (2011) Multiscale modeling and simulation of damage by void nucleation and growth. Ph.D. thesis, California Institute of Technology Reina C (2011) Multiscale modeling and simulation of damage by void nucleation and growth. Ph.D. thesis, California Institute of Technology
44.
Zurück zum Zitat Reina C, Li B, Weinberg K, Ortiz M (2013) A micromechanical model of distributed damage due to void growth in general materials and under general deformation histories. Int J Numer Methods Eng 93(6):575–611MathSciNetCrossRefMATH Reina C, Li B, Weinberg K, Ortiz M (2013) A micromechanical model of distributed damage due to void growth in general materials and under general deformation histories. Int J Numer Methods Eng 93(6):575–611MathSciNetCrossRefMATH
45.
Zurück zum Zitat Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7(5):457–474CrossRef Ricker S, Mergheim J, Steinmann P (2009) On the multiscale computation of defect driving forces. Int J Multiscale Comput Eng 7(5):457–474CrossRef
46.
Zurück zum Zitat Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia 58(4):1152–1211CrossRef Roters F, Eisenlohr P, Hantcherli L, Tjahjanto DD, Bieler TR, Raabe D (2010) Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications. Acta Materialia 58(4):1152–1211CrossRef
47.
Zurück zum Zitat Schröder J, Labusch M, Keip MA (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE\(^2\)-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280MathSciNetCrossRefMATH Schröder J, Labusch M, Keip MA (2016) Algorithmic two-scale transition for magneto-electro-mechanically coupled problems: FE\(^2\)-scheme: localization and homogenization. Comput Methods Appl Mech Eng 302:253–280MathSciNetCrossRefMATH
48.
Zurück zum Zitat Sigmund O (2009) Systematic design of metamaterials by topology optimization. In: IUTAM symposium on modelling nanomaterials and nanosystems, pp 151–159. Springer Sigmund O (2009) Systematic design of metamaterials by topology optimization. In: IUTAM symposium on modelling nanomaterials and nanosystems, pp 151–159. Springer
49.
Zurück zum Zitat Subbaraj K, Dokainish M (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRefMATH Subbaraj K, Dokainish M (1989) A survey of direct time-integration methods in computational structural dynamics—II. Implicit methods. Comput Struct 32(6):1387–1401MathSciNetCrossRefMATH
50.
Zurück zum Zitat Verhoosel CV, Remmers JJ, Gutiérrez MA, De Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179CrossRefMATH Verhoosel CV, Remmers JJ, Gutiérrez MA, De Borst R (2010) Computational homogenization for adhesive and cohesive failure in quasi-brittle solids. Int J Numer Methods Eng 83(8–9):1155–1179CrossRefMATH
51.
Zurück zum Zitat Vila J, Pal RK, Ruzzene M, Trainiti G (2017) A Bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties. J Sound Vib 406:363–377CrossRef Vila J, Pal RK, Ruzzene M, Trainiti G (2017) A Bloch-based procedure for dispersion analysis of lattices with periodic time-varying properties. J Sound Vib 406:363–377CrossRef
52.
Zurück zum Zitat Zanjani MB, Davoyan AR, Engheta N, Lukes JR (2015) NEMS with broken T symmetry: graphene based unidirectional acoustic transmission lines. Sci Rep 5:9926CrossRef Zanjani MB, Davoyan AR, Engheta N, Lukes JR (2015) NEMS with broken T symmetry: graphene based unidirectional acoustic transmission lines. Sci Rep 5:9926CrossRef
53.
Zurück zum Zitat Zanjani MB, Davoyan AR, Mahmoud AM, Engheta N, Lukes JR (2014) One-way phonon isolation in acoustic waveguides. Appl Phys Lett 104(8):081905CrossRef Zanjani MB, Davoyan AR, Mahmoud AM, Engheta N, Lukes JR (2014) One-way phonon isolation in acoustic waveguides. Appl Phys Lett 104(8):081905CrossRef
54.
Zurück zum Zitat Zhang P, To AC (2013) Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl Phys Lett 102(12):121910CrossRef Zhang P, To AC (2013) Broadband wave filtering of bioinspired hierarchical phononic crystal. Appl Phys Lett 102(12):121910CrossRef
55.
Zurück zum Zitat Zhu R, Liu X, Hu G, Sun C, Huang G (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333(10):2759–2773CrossRef Zhu R, Liu X, Hu G, Sun C, Huang G (2014) A chiral elastic metamaterial beam for broadband vibration suppression. J Sound Vib 333(10):2759–2773CrossRef
56.
Zurück zum Zitat Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, BerlinMATH Zohdi TI, Wriggers P (2008) An introduction to computational micromechanics. Springer, BerlinMATH
Metadaten
Titel
Dynamic homogenization of resonant elastic metamaterials with space/time modulation
verfasst von
Chenchen Liu
Celia Reina
Publikationsdatum
04.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2019
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-018-1662-x

Weitere Artikel der Ausgabe 1/2019

Computational Mechanics 1/2019 Zur Ausgabe

Neuer Inhalt