Skip to main content

2020 | OriginalPaper | Buchkapitel

2. Dynamic Models

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A graph or hypergraph is a static representation of all possible interactions between nodes. However, due to these same interactions, the network topology evolves over time. The abundances of the chemical and/or molecular species they represent in nodes change over time and if they fall below a critical threshold, they cause the disappearance of any connected arches and then determine their reappearance if they return to exceed this critical threshold. The description of the dynamics of a network consists of a mathematical model often constituted by differential equations that express the speed of variation of the abundances of the biological entities represented by the nodes. The dynamics of a network can be deterministic, or stochastic or stochastic/deterministic hybrid. Depending on the nature of its determination, the dynamics is modelled by deterministic differential equations, stochastic differential equations, master equations, and in cases where the numerical solution of the latter is difficult to calculate, from stochastic simulation algorithms. In this chapter, we give an overview of the most used dynamic models for simulating the temporal evolution of a network.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The functional assigns a number to a function. Here, the term refers to every mapping having the function as argument.
 
2
The statement that a state is described by function is not in contradiction with the statement that a state is a vector. Namely, a finite-dimensional vector can also be interpreted as a function.
 
Literatur
1.
Zurück zum Zitat Lecca P, Laurenzi I, Jordan F. Deterministic versus stochastic modelling in biochemistry and systems biology. Woodhead Publishing Series in Biomedicine No. 21; 2012. Lecca P, Laurenzi I, Jordan F. Deterministic versus stochastic modelling in biochemistry and systems biology. Woodhead Publishing Series in Biomedicine No. 21; 2012.
2.
Zurück zum Zitat Lecca P. Stochastic chemical kinetics: a review of the modelling and simulation approaches. Biophys Rev. 2013;5(4):323–45.CrossRef Lecca P. Stochastic chemical kinetics: a review of the modelling and simulation approaches. Biophys Rev. 2013;5(4):323–45.CrossRef
3.
Zurück zum Zitat Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359 March.CrossRef Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359 March.CrossRef
4.
Zurück zum Zitat Paola L, Angela R. Theoretical physics for biological systems. Boca Raton: CRC Press; 2019. Paola L, Angela R. Theoretical physics for biological systems. Boca Raton: CRC Press; 2019.
5.
Zurück zum Zitat van Kampfen NG. Stochastic processes in physics and chemistry. Amsterdam: Elsevier; 1992. van Kampfen NG. Stochastic processes in physics and chemistry. Amsterdam: Elsevier; 1992.
7.
Zurück zum Zitat Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81(25).CrossRef Gillespie DT. Exact stochastic simulation of coupled chemical reactions. J Phys Chem. 1977;81(25).CrossRef
8.
Zurück zum Zitat Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359 Mar.CrossRef Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359 Mar.CrossRef
9.
Zurück zum Zitat Jaroslav A. A hybrid of the chemical master equation and the gillespie algorithm for efficient stochastic simulations of sub-networks. PLoS ONE. 2016;11:1–22. Jaroslav A. A hybrid of the chemical master equation and the gillespie algorithm for efficient stochastic simulations of sub-networks. PLoS ONE. 2016;11:1–22.
10.
Zurück zum Zitat Calder M, Gilmore S, Khanin R, Higham DJ. Computational methods in systems biology chemical master equation and Langevin regimes for a gene transcription model. Theor Comput Sci. 2008;408(1):31–40. Calder M, Gilmore S, Khanin R, Higham DJ. Computational methods in systems biology chemical master equation and Langevin regimes for a gene transcription model. Theor Comput Sci. 2008;408(1):31–40.
11.
Zurück zum Zitat Hemberg M, Barahona M. Perfect sampling of the master equation for gene regulatory networks. Biophys J. 2007;93(2):401–10.CrossRef Hemberg M, Barahona M. Perfect sampling of the master equation for gene regulatory networks. Biophys J. 2007;93(2):401–10.CrossRef
12.
Zurück zum Zitat Booth HS, Burden CJ, Hegland M, Santoso L. A stochastic model of gene regulation using the chemical master equation. In: Fagerberg J, Mowery DC, Nelson RR, editors. Mathematical modeling of biological systems, vol. I. Birkhäuser: Boston; Springer: Berlin; 2007. p. 71–81. Booth HS, Burden CJ, Hegland M, Santoso L. A stochastic model of gene regulation using the chemical master equation. In: Fagerberg J, Mowery DC, Nelson RR, editors. Mathematical modeling of biological systems, vol. I. Birkhäuser: Boston; Springer: Berlin; 2007. p. 71–81.
13.
Zurück zum Zitat Lecca P, Bagagiolo F, Scarpa M. Hybrid deterministic/stochastic simulation of complex biochemical systems. Mol BioSyst. 2017;13:2672–86.CrossRef Lecca P, Bagagiolo F, Scarpa M. Hybrid deterministic/stochastic simulation of complex biochemical systems. Mol BioSyst. 2017;13:2672–86.CrossRef
14.
Zurück zum Zitat Kaznessis YN, Smadbeck P. Solution of chemical master equations for nonlinear stochastic reaction networks. Curr Opin Chem Eng. 2014;5:90–5.CrossRef Kaznessis YN, Smadbeck P. Solution of chemical master equations for nonlinear stochastic reaction networks. Curr Opin Chem Eng. 2014;5:90–5.CrossRef
16.
Zurück zum Zitat Gupta A, Mikelson J, Khammash M. A finite state projection algorithm for the stationary solution of the chemical master equation. J Chem Phys. 2017;147(15):154101.CrossRef Gupta A, Mikelson J, Khammash M. A finite state projection algorithm for the stationary solution of the chemical master equation. J Chem Phys. 2017;147(15):154101.CrossRef
17.
Zurück zum Zitat Munsky B, Khammash M. A finite state projection algorithm for the stationary solution of the chemical master equation. J Chem Phys. 2017;147(15):154101.CrossRef Munsky B, Khammash M. A finite state projection algorithm for the stationary solution of the chemical master equation. J Chem Phys. 2017;147(15):154101.CrossRef
18.
Zurück zum Zitat Dinh KN, Sidje RB. Understanding the finite state projection and related methods for solving the chemical master equation. Phys. Biol. 2016;13(3):035003.CrossRef Dinh KN, Sidje RB. Understanding the finite state projection and related methods for solving the chemical master equation. Phys. Biol. 2016;13(3):035003.CrossRef
19.
Zurück zum Zitat Hjartarson A, Ruess J, Lygeros J. Approximating the solution of the chemical master equation by combining finite state projection and stochastic simulation. In: 2013 IEEE 52nd annual conference on decision and control (CDC); 2013. Hjartarson A, Ruess J, Lygeros J. Approximating the solution of the chemical master equation by combining finite state projection and stochastic simulation. In: 2013 IEEE 52nd annual conference on decision and control (CDC); 2013.
20.
Zurück zum Zitat Sunkara V, Hegland M. An optimal finite state projection method. Proc Comput Sci. 2010;1(1):1579–86 ICCS 2010.MATHCrossRef Sunkara V, Hegland M. An optimal finite state projection method. Proc Comput Sci. 2010;1(1):1579–86 ICCS 2010.MATHCrossRef
21.
Zurück zum Zitat MacNamara S, Sidje R, Burrage K. An improved dynamic finite state projection algorithm for the numerical solution of the chemical master equation with applications. ANZIAM J. 2007;48:413–35.MATHCrossRef MacNamara S, Sidje R, Burrage K. An improved dynamic finite state projection algorithm for the numerical solution of the chemical master equation with applications. ANZIAM J. 2007;48:413–35.MATHCrossRef
22.
Zurück zum Zitat MacNamara S, Burrage K, Sidje RB. Multiscale modeling of chemical kinetics via the master equation. Multiscale Model Simul. 2008;6(4):1146–68.MathSciNetMATHCrossRef MacNamara S, Burrage K, Sidje RB. Multiscale modeling of chemical kinetics via the master equation. Multiscale Model Simul. 2008;6(4):1146–68.MathSciNetMATHCrossRef
23.
Zurück zum Zitat Munsky B, Khammash M. The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys. 2006;124(4):044104.MATHCrossRef Munsky B, Khammash M. The finite state projection algorithm for the solution of the chemical master equation. J Chem Phys. 2006;124(4):044104.MATHCrossRef
24.
Zurück zum Zitat Weber L, Raymond W, Munsky B. Identification of gene regulation models from single-cell data. bioRxiv; 2017. Weber L, Raymond W, Munsky B. Identification of gene regulation models from single-cell data. bioRxiv; 2017.
25.
Zurück zum Zitat Fox Z, Neuert G, Munsky B. Finite state projection based bounds to compare chemical master equation models using single-cell data. J Chem Phys. 2016;145(7):074101.CrossRef Fox Z, Neuert G, Munsky B. Finite state projection based bounds to compare chemical master equation models using single-cell data. J Chem Phys. 2016;145(7):074101.CrossRef
26.
Zurück zum Zitat Vo H, Sidje R. Improved Krylov-FSP method for solving the chemical master equation. In: World congress on engineering and computer science. Lecture notes in engineering and computer science, vol 2226; 2016, p. 521–6. Vo H, Sidje R. Improved Krylov-FSP method for solving the chemical master equation. In: World congress on engineering and computer science. Lecture notes in engineering and computer science, vol 2226; 2016, p. 521–6.
27.
Zurück zum Zitat Dinh KN, Sidje RB. An application of the Krylov-FSP-SSA method to parameter fitting with maximum likelihood. Phys Biol. 2017;14(6):065001.CrossRef Dinh KN, Sidje RB. An application of the Krylov-FSP-SSA method to parameter fitting with maximum likelihood. Phys Biol. 2017;14(6):065001.CrossRef
28.
Zurück zum Zitat Munsky B, Khammash M. A multiple time interval finite state projection algorithm for the solution to the chemical master equation. J Comput Phys. 2007;226(1):818–35.MathSciNetMATHCrossRef Munsky B, Khammash M. A multiple time interval finite state projection algorithm for the solution to the chemical master equation. J Comput Phys. 2007;226(1):818–35.MathSciNetMATHCrossRef
29.
Zurück zum Zitat Udrescu T, Jahnke T. An adaptive method for solving chemical master equations using a sparse wavelet basis. In: AIP conference proceedings, vol. 489, 04; 2009, p. 1168. Udrescu T, Jahnke T. An adaptive method for solving chemical master equations using a sparse wavelet basis. In: AIP conference proceedings, vol. 489, 04; 2009, p. 1168.
30.
Zurück zum Zitat Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359.CrossRef Kazeev V, Khammash M, Nip M, Schwab C. Direct solution of the chemical master equation using quantized tensor trains. PLoS Comput Biol. 2014;10(3):e1003359.CrossRef
31.
Zurück zum Zitat Vo H, Sidje R. Solving the chemical master equation with the finite state projection and inexact uniformization in quantized tensor train format. In: 5th international conference on computational and mathematical biomedical engineering - CMBE2017; 2017, p. 1108. Vo H, Sidje R. Solving the chemical master equation with the finite state projection and inexact uniformization in quantized tensor train format. In: 5th international conference on computational and mathematical biomedical engineering - CMBE2017; 2017, p. 1108.
32.
Zurück zum Zitat Vo H, Sidje R. An adaptive solution to the chemical master equation using tensors. 2017;147:044102. Vo H, Sidje R. An adaptive solution to the chemical master equation using tensors. 2017;147:044102.
33.
Zurück zum Zitat Gillespie TD. Gillespie algorithm for biochemical reaction simulation. New York: Springer; 2013.CrossRef Gillespie TD. Gillespie algorithm for biochemical reaction simulation. New York: Springer; 2013.CrossRef
34.
Zurück zum Zitat Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007;58(1):35–55.CrossRef Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007;58(1):35–55.CrossRef
35.
Zurück zum Zitat Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical species. J Comput Phys. 1976;22:403–34.MathSciNetCrossRef Gillespie DT. A general method for numerically simulating the stochastic time evolution of coupled chemical species. J Comput Phys. 1976;22:403–34.MathSciNetCrossRef
36.
Zurück zum Zitat Albert J. A hybrid of the chemical master equation and the gillespie algorithm for efficient stochastic simulations of sub-networks. PLoS ONE. 2016;11:03. Albert J. A hybrid of the chemical master equation and the gillespie algorithm for efficient stochastic simulations of sub-networks. PLoS ONE. 2016;11:03.
37.
Zurück zum Zitat Sanft KR, Othmer HG. Constant-complexity stochastic simulation algorithm with optimal binning. J Chem Phys. 2015;143(7):074108.CrossRef Sanft KR, Othmer HG. Constant-complexity stochastic simulation algorithm with optimal binning. J Chem Phys. 2015;143(7):074108.CrossRef
38.
Zurück zum Zitat Wilkinson DJ. Stochastic modelling for systems biology. Boca Raton: CRC Press, Taylor & Francis Group; 2012.MATH Wilkinson DJ. Stochastic modelling for systems biology. Boca Raton: CRC Press, Taylor & Francis Group; 2012.MATH
39.
Zurück zum Zitat Jack J, Păun A, Rodríguez-Patón A. A review of the nondeterministic waiting time algorithm. 2011;10(1):139–49. Jack J, Păun A, Rodríguez-Patón A. A review of the nondeterministic waiting time algorithm. 2011;10(1):139–49.
40.
Zurück zum Zitat Resat H, Petzold L, Pettigrew MF. Kinetic modeling of biological systems. In: Methods in molecular biology. Humana Press: Totowa, 2009, p. 311–35. Resat H, Petzold L, Pettigrew MF. Kinetic modeling of biological systems. In: Methods in molecular biology. Humana Press: Totowa, 2009, p. 311–35.
41.
Zurück zum Zitat Haseltine EL, Rawlings JB. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys. 2002;117:6959–69.CrossRef Haseltine EL, Rawlings JB. Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J Chem Phys. 2002;117:6959–69.CrossRef
42.
Zurück zum Zitat Zhang S, Li J. Explicit numerical methods for solving stiff dynamical systems. J Comput Nonlinear Dyn. 2011;6(4):041008.CrossRef Zhang S, Li J. Explicit numerical methods for solving stiff dynamical systems. J Comput Nonlinear Dyn. 2011;6(4):041008.CrossRef
43.
Zurück zum Zitat Matsubara Y, Kikuchi S, Sugimoto M, Tomita M. BMC Bioinform. 2006;7(1):230.CrossRef Matsubara Y, Kikuchi S, Sugimoto M, Tomita M. BMC Bioinform. 2006;7(1):230.CrossRef
44.
Zurück zum Zitat Rué P, Villà-Freixa J, Burrage K. Simulation methods with extended stability for stiff biochemical kinetics. BMC Syst Biol. 2010;4(1):110.CrossRef Rué P, Villà-Freixa J, Burrage K. Simulation methods with extended stability for stiff biochemical kinetics. BMC Syst Biol. 2010;4(1):110.CrossRef
45.
Zurück zum Zitat Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J Sci Stat Comput. 1983;4(1):136–48 March.MathSciNetMATHCrossRef Petzold L. Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J Sci Stat Comput. 1983;4(1):136–48 March.MathSciNetMATHCrossRef
46.
Zurück zum Zitat Wilkinson D. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet. 2009;10:122–33.CrossRef Wilkinson D. Stochastic modelling for quantitative description of heterogeneous biological systems. Nat Rev Genet. 2009;10:122–33.CrossRef
47.
Zurück zum Zitat Menz S, Latorre JC, Schütte C, Huisinga W. Hybrid stochastic-deterministic solution of the chemical master equation. SIAM Interdiscip J Multiscale Model Simul (MMS). 2012;10:1232–62.MathSciNetMATHCrossRef Menz S, Latorre JC, Schütte C, Huisinga W. Hybrid stochastic-deterministic solution of the chemical master equation. SIAM Interdiscip J Multiscale Model Simul (MMS). 2012;10:1232–62.MathSciNetMATHCrossRef
48.
Zurück zum Zitat Lachor P, Puszynski K, Polanski AJ. Deterministic models and stochastic simulations in multiple reaction models in systems biology. J Biotechnol, Comput Biol Bionanotechnol. 2011;92(3):265–80. Lachor P, Puszynski K, Polanski AJ. Deterministic models and stochastic simulations in multiple reaction models in systems biology. J Biotechnol, Comput Biol Bionanotechnol. 2011;92(3):265–80.
49.
Zurück zum Zitat Perkins TJ, Wilds R, Glass L. Robust dynamics in minimal hybrid models of genetic networks. Philos Trans A Math Phys Eng Sci. 2010;368(1930):4961–75.MathSciNetMATHCrossRef Perkins TJ, Wilds R, Glass L. Robust dynamics in minimal hybrid models of genetic networks. Philos Trans A Math Phys Eng Sci. 2010;368(1930):4961–75.MathSciNetMATHCrossRef
50.
Zurück zum Zitat Crudu ADA, Radulescu O. Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol. 2009;3(1):1–25.CrossRef Crudu ADA, Radulescu O. Hybrid stochastic simplifications for multiscale gene networks. BMC Syst Biol. 2009;3(1):1–25.CrossRef
51.
Zurück zum Zitat Pahle J. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform. 2009;10(1):53–64.CrossRef Pahle J. Biochemical simulations: stochastic, approximate stochastic and hybrid approaches. Brief Bioinform. 2009;10(1):53–64.CrossRef
52.
Zurück zum Zitat Samant A, Ogunnaike BA, Vlachos DG. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks. BMC Bioinform. 2007;8(1):1–23.CrossRef Samant A, Ogunnaike BA, Vlachos DG. A hybrid multiscale Monte Carlo algorithm (HyMSMC) to cope with disparity in time scales and species populations in intracellular networks. BMC Bioinform. 2007;8(1):1–23.CrossRef
53.
Zurück zum Zitat Salis H, Sotiropoulos V, Kaznessis YN. Multiscale Hy3S: hybrid stochastic simulation for supercomputers. BMC Bioinform. 2006;7(1):1–21.CrossRef Salis H, Sotiropoulos V, Kaznessis YN. Multiscale Hy3S: hybrid stochastic simulation for supercomputers. BMC Bioinform. 2006;7(1):1–21.CrossRef
54.
Zurück zum Zitat Alur R, Belta C, Ivancic F, Kumar V, Mintz M, Pappas GJ, Rubin H, Schug J. Hybrid modeling and simulation of biomolecular networks. Lecture notes in computer science, 2034:19–32, 2001. Alur R, Belta C, Ivancic F, Kumar V, Mintz M, Pappas GJ, Rubin H, Schug J. Hybrid modeling and simulation of biomolecular networks. Lecture notes in computer science, 2034:19–32, 2001.
55.
Zurück zum Zitat Sanft KR, Gillespie DT, Petzold LR. Legitimacy of the stochastic michaelis–menten approximation. IET Syst Biol. 2011;5(1):58–69 January.CrossRef Sanft KR, Gillespie DT, Petzold LR. Legitimacy of the stochastic michaelis–menten approximation. IET Syst Biol. 2011;5(1):58–69 January.CrossRef
Metadaten
Titel
Dynamic Models
verfasst von
Paola Lecca
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-41255-5_2