Skip to main content
Erschienen in: Rock Mechanics and Rock Engineering 8/2016

21.04.2016 | Original Paper

Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table

verfasst von: Gang Fan, Jianjing Zhang, Jinbiao Wu, Kongming Yan

Erschienen in: Rock Mechanics and Rock Engineering | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A large-scale shaking table test was performed to study the dynamic response of slopes parallel to geological bedding (bedding slopes) and slopes that cross-cut geological bedding (counter-bedding slopes). The test results show that the acceleration amplification coefficients increase with increasing elevation and, when the input earthquake amplitude is greater than 0.3 g, both bedding and counter-bedding slopes begin to show nonlinear dynamic response characteristics. With increasing elevation, the displacement of the bedding slope surface increases greatly. Conversely, the displacement of the counter-bedding slope surface increases first and then decreases; the slope develops a bulge at the relative elevation of 0.85. The displacement of the bedding slope surface is greater than that of the counter-bedding slope. The counter-bedding slope is more seismically stable compared with the bedding slope. Based on the Hilbert–Huang transform and marginal spectrum theories, the processes that develop dynamic damage of the bedding and counter-bedding slopes are identified. It is shown that the dynamic failure mode of the bedding slope is mainly represented by vertical tensile cracks at the rear of the slope, bedding slide of the strata along the weak intercalation, and rock collapse from the slope crest. However, the dynamic failure mode of the counter-bedding slope is mainly represented by staggered horizontal and vertical fissures, extrusion of the weak intercalation, and breakage at the slope crest.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aydan Ö, Ohta Y, Geniş M, Tokashiki N, Ohkubo K (2010) Response and stability of underground structures in rock mass during earthquakes. Rock Mech Rock Eng 43:857–875CrossRef Aydan Ö, Ohta Y, Geniş M, Tokashiki N, Ohkubo K (2010) Response and stability of underground structures in rock mass during earthquakes. Rock Mech Rock Eng 43:857–875CrossRef
Zurück zum Zitat Barbero M, Barla G (2010) Stability analysis of a rock column in seismic conditions. Rock Mech Rock Eng 43:845–855CrossRef Barbero M, Barla G (2010) Stability analysis of a rock column in seismic conditions. Rock Mech Rock Eng 43:845–855CrossRef
Zurück zum Zitat Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. J Earthquake Eng 8(Special Issue 1):43–91CrossRef Bommer JJ, Acevedo AB (2004) The use of real earthquake accelerograms as input to dynamic analysis. J Earthquake Eng 8(Special Issue 1):43–91CrossRef
Zurück zum Zitat Brand L (1957) The Pi theorem of dimensional analysis. Arch Ration Mech Anal 1:35–45CrossRef Brand L (1957) The Pi theorem of dimensional analysis. Arch Ration Mech Anal 1:35–45CrossRef
Zurück zum Zitat Cao H, Yang H, Friswell MI, Bai SL (2004) The analysis of earthquake waves based on nonlinear responses of RC structures. In: Proceedings of the 7th biennial conference on engineering systems design and analysis, Manchester, UK, July 2004, no. ESDA2004-58253 Cao H, Yang H, Friswell MI, Bai SL (2004) The analysis of earthquake waves based on nonlinear responses of RC structures. In: Proceedings of the 7th biennial conference on engineering systems design and analysis, Manchester, UK, July 2004, no. ESDA2004-58253
Zurück zum Zitat Chen ZL, Xu Q, Hu X (2013) Study on dynamic response of the “Dualistic” structure rock slope with seismic wave theory. J Mt Sci 10(6):996–1007CrossRef Chen ZL, Xu Q, Hu X (2013) Study on dynamic response of the “Dualistic” structure rock slope with seismic wave theory. J Mt Sci 10(6):996–1007CrossRef
Zurück zum Zitat Clough RW, Pirtz D (1956) Earthquake resistance of rock-fill dams. J Soil Mech Found Div 82(2):1–26 Clough RW, Pirtz D (1956) Earthquake resistance of rock-fill dams. J Soil Mech Found Div 82(2):1–26
Zurück zum Zitat Curtis WD, Logan JD, Parker WA (1982) Dimensional analysis and the Pi theorem. Lin Algebra Appl 47:117–126CrossRef Curtis WD, Logan JD, Parker WA (1982) Dimensional analysis and the Pi theorem. Lin Algebra Appl 47:117–126CrossRef
Zurück zum Zitat Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40:883–895CrossRef Dai FC, Xu C, Yao X, Xu L, Tu XB, Gong QM (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J Asian Earth Sci 40:883–895CrossRef
Zurück zum Zitat Huang RQ (2012) Mechanisms of large-scale landslides in China. Bull Eng Geol Environ 71:161–170CrossRef Huang RQ (2012) Mechanisms of large-scale landslides in China. Bull Eng Geol Environ 71:161–170CrossRef
Zurück zum Zitat Huang RQ, Li WL (2009a) Development and distribution of geohazards triggered by the 5.12 Wenchuan Earthquake in China. Sci China Ser E Technol Sci 52:810–819CrossRef Huang RQ, Li WL (2009a) Development and distribution of geohazards triggered by the 5.12 Wenchuan Earthquake in China. Sci China Ser E Technol Sci 52:810–819CrossRef
Zurück zum Zitat Huang RQ, Li WL (2009b) Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull Eng Geol Environ 68:363–371CrossRef Huang RQ, Li WL (2009b) Analysis of the geo-hazards triggered by the 12 May 2008 Wenchuan Earthquake, China. Bull Eng Geol Environ 68:363–371CrossRef
Zurück zum Zitat Huang QX, Wang JL (2011) Study of the deformation characteristics of an anti-dip slope with soft internal layers. China Civil Eng J 44(5):109–114 (in Chinese) Huang QX, Wang JL (2011) Study of the deformation characteristics of an anti-dip slope with soft internal layers. China Civil Eng J 44(5):109–114 (in Chinese)
Zurück zum Zitat Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995CrossRef Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995CrossRef
Zurück zum Zitat Huang RQ, Li G, Ju NP (2013a) Shaking table test on strong earthquake response of stratified rock slopes. Chin J Rock Mech Eng 32(5):865–875 (in Chinese) Huang RQ, Li G, Ju NP (2013a) Shaking table test on strong earthquake response of stratified rock slopes. Chin J Rock Mech Eng 32(5):865–875 (in Chinese)
Zurück zum Zitat Huang RQ, Zhao JJ, Ju NP, Li G, Lee ML, Li YR (2013b) Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards 68:1021–1039CrossRef Huang RQ, Zhao JJ, Ju NP, Li G, Lee ML, Li YR (2013b) Analysis of an anti-dip landslide triggered by the 2008 Wenchuan earthquake in China. Nat Hazards 68:1021–1039CrossRef
Zurück zum Zitat Krinitzsky EL, Chang FK (1977) Specifying peak motions for design earthquakes. State-of-the-art for assessing earthquake hazards in the United States, Report 7, Miscellaneous Paper S-73-1. US Army Corps of Engineers, Vicksburg, Mississippi Krinitzsky EL, Chang FK (1977) Specifying peak motions for design earthquakes. State-of-the-art for assessing earthquake hazards in the United States, Report 7, Miscellaneous Paper S-73-1. US Army Corps of Engineers, Vicksburg, Mississippi
Zurück zum Zitat Latha GM, Garaga A (2010) Seismic stability analysis of a Himalayan rock slope. Rock Mech Rock Eng 43:831–843CrossRef Latha GM, Garaga A (2010) Seismic stability analysis of a Himalayan rock slope. Rock Mech Rock Eng 43:831–843CrossRef
Zurück zum Zitat Li CS, Lam SSE, Zhang MZ, Wong YL (2006) Shaking table test of a 1:20 scale high-rise building with a transfer plate system. J Struct Eng 132:1732–1744CrossRef Li CS, Lam SSE, Zhang MZ, Wong YL (2006) Shaking table test of a 1:20 scale high-rise building with a transfer plate system. J Struct Eng 132:1732–1744CrossRef
Zurück zum Zitat Lin ML, Wang KL (2006) Seismic slope behavior in a large-scale shaking table model test. Eng Geol 86:118–133CrossRef Lin ML, Wang KL (2006) Seismic slope behavior in a large-scale shaking table model test. Eng Geol 86:118–133CrossRef
Zurück zum Zitat Ling HI, Mohri Y, Leshchinsky D, Burke C, Matsushima K, Liu HB (2005) Large-scale shaking table tests on modular-block reinforced soil retaining walls. J Geotech Geoenviron Eng 131:465–476CrossRef Ling HI, Mohri Y, Leshchinsky D, Burke C, Matsushima K, Liu HB (2005) Large-scale shaking table tests on modular-block reinforced soil retaining walls. J Geotech Geoenviron Eng 131:465–476CrossRef
Zurück zum Zitat Liu HX, Xu Q, Li YR, Fan XM (2013) Response of high-strength rock slope to seismic waves in a shaking table test. Bull Seismol Soc Am 103:3012–3025CrossRef Liu HX, Xu Q, Li YR, Fan XM (2013) Response of high-strength rock slope to seismic waves in a shaking table test. Bull Seismol Soc Am 103:3012–3025CrossRef
Zurück zum Zitat Liu HX, Xu Q, Li YR (2014) Effect of lithology and structure on seismic response of steep slope in a shaking table test. J Mt Sci 11(2):371–383CrossRef Liu HX, Xu Q, Li YR (2014) Effect of lithology and structure on seismic response of steep slope in a shaking table test. J Mt Sci 11(2):371–383CrossRef
Zurück zum Zitat Matsuo O, Tsutsumi T, Yokoyama K, Saito Y (1998) Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls. Geosynth Int 5:97–126CrossRef Matsuo O, Tsutsumi T, Yokoyama K, Saito Y (1998) Shaking table tests and analyses of geosynthetic-reinforced soil retaining walls. Geosynth Int 5:97–126CrossRef
Zurück zum Zitat Meymand PJ (1998) Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. dissertation, University of California, Berkeley Meymand PJ (1998) Shaking table scale model tests of nonlinear soil-pile-superstructure interaction in soft clay. Ph.D. dissertation, University of California, Berkeley
Zurück zum Zitat Seismosoft (2002) SeismoSignal. Pavia, Italy Seismosoft (2002) SeismoSignal. Pavia, Italy
Zurück zum Zitat Wartman J, Seed RB, Bray JD (2005) Shaking table modeling of seismically induced deformations in slopes. J Geotech Geoenviron Eng 131:610–622CrossRef Wartman J, Seed RB, Bray JD (2005) Shaking table modeling of seismically induced deformations in slopes. J Geotech Geoenviron Eng 131:610–622CrossRef
Zurück zum Zitat Wasowski J, Keefer DK, Lee CT (2011) Toward the next generation of research on earthquake-induced landslides: current issues and future challenges. Eng Geol 122:1–8CrossRef Wasowski J, Keefer DK, Lee CT (2011) Toward the next generation of research on earthquake-induced landslides: current issues and future challenges. Eng Geol 122:1–8CrossRef
Zurück zum Zitat Xu BT, Yan CH (2014) An experimental study of the mechanical behavior of a weak intercalated layer. Rock Mech Rock Eng 47:791–798CrossRef Xu BT, Yan CH (2014) An experimental study of the mechanical behavior of a weak intercalated layer. Rock Mech Rock Eng 47:791–798CrossRef
Zurück zum Zitat Yang GX, Wu FQ, Dong JY, Qi SW (2012) Study of dynamic response characters and failure mechanism of rock slope under earthquake. Chin J Rock Mech Eng 31(4):696–702 (in Chinese) Yang GX, Wu FQ, Dong JY, Qi SW (2012) Study of dynamic response characters and failure mechanism of rock slope under earthquake. Chin J Rock Mech Eng 31(4):696–702 (in Chinese)
Zurück zum Zitat Yang TH, Xu T, Liu HY, Zhang CM, Wang SY, Rui YQ, Shen L (2014) Rheological characteristics of weak rock mass and effects on the long-term stability of slopes. Rock Mech Rock Eng 47:2253–2263CrossRef Yang TH, Xu T, Liu HY, Zhang CM, Wang SY, Rui YQ, Shen L (2014) Rheological characteristics of weak rock mass and effects on the long-term stability of slopes. Rock Mech Rock Eng 47:2253–2263CrossRef
Zurück zum Zitat Yeh CH, Wen YK (1990) Modeling of nonstationary ground motion and analysis of inelastic structural response. Struct Saf 8:281–298CrossRef Yeh CH, Wen YK (1990) Modeling of nonstationary ground motion and analysis of inelastic structural response. Struct Saf 8:281–298CrossRef
Metadaten
Titel
Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table
verfasst von
Gang Fan
Jianjing Zhang
Jinbiao Wu
Kongming Yan
Publikationsdatum
21.04.2016
Verlag
Springer Vienna
Erschienen in
Rock Mechanics and Rock Engineering / Ausgabe 8/2016
Print ISSN: 0723-2632
Elektronische ISSN: 1434-453X
DOI
https://doi.org/10.1007/s00603-016-0971-7

Weitere Artikel der Ausgabe 8/2016

Rock Mechanics and Rock Engineering 8/2016 Zur Ausgabe