Skip to main content

17.11.2023 | Research

Dynamic System Reconfiguration in Stable and Green Edge Service Provisioning

verfasst von: Zhengzhe Xiang, Dezhi Wang, Mengzhu He, Yuanyi Chen

Erschienen in: Mobile Networks and Applications

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multi-access Edge Computing (MEC) has emerged as an essential paradigm to address the challenges posed by the proliferation of connected mobile devices. By constructing a MEC-based service system with edge servers in proximity and deploying modules or services on them, these devices can perform complex tasks efficiently with their own resources. However, the significant energy consumption associated with this computing paradigm poses a major obstacle to its widespread adoption. Thus, it is imperative to carefully configure the MEC-based service system to ensure optimal performance and cost-effectiveness. Furthermore, the dynamic nature of the system’s environment or context necessitates that the configuration be adaptable over time to fully utilize limited resources and ensure stability and energy efficiency. In this paper, we present an investigation and model of how mobile devices’ service requests are processed in a MEC-based service system. We propose a reinforcement learning-based algorithm to train a policy that dynamically reconfigures the system to minimize the average service response time while maximizing stability and energy efficiency. Our approach is validated through experiments on the YouTube usage dataset, and we demonstrate that it outperforms the baseline models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Fußnoten
1
https://damo.alibaba.com/labs/city-brain?lang=en
 
2
the fully-connected layers before activation functions are omitted
 
3
https://www.caida.org/catalog/datasets/overview/
 
4
https://infolab.tamu.edu/data/
 
5
http://skulddata.cs.umass.edu/traces/network/README-youtube
 
Literatur
1.
Zurück zum Zitat Xiang, Z., Deng, S., Zheng, Y., Wang, D., Tehari, J., Zheng, Z.: Energy-effective iot services in balanced edge-cloud collaboration systems. In: 2021 IEEE International Conference on Web Services (ICWS), pp. 219–229 (2021). IEEE Xiang, Z., Deng, S., Zheng, Y., Wang, D., Tehari, J., Zheng, Z.: Energy-effective iot services in balanced edge-cloud collaboration systems. In: 2021 IEEE International Conference on Web Services (ICWS), pp. 219–229 (2021). IEEE
2.
Zurück zum Zitat Xiang, Z., Deng, S., Jiang, F., Gao, H., Tehari, J., Yin, J.: Computing power allocation and traffic scheduling for edge service provisioning. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 394–403 (2020). IEEE Xiang, Z., Deng, S., Jiang, F., Gao, H., Tehari, J., Yin, J.: Computing power allocation and traffic scheduling for edge service provisioning. In: 2020 IEEE International Conference on Web Services (ICWS), pp. 394–403 (2020). IEEE
3.
Zurück zum Zitat Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and challenges. IEEE internet of things journal 3(5):637–646 CrossRef Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and challenges. IEEE internet of things journal 3(5):637–646 CrossRef
4.
Zurück zum Zitat Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications 34(12):3590–3605 CrossRef Mao Y, Zhang J, Letaief KB (2016) Dynamic computation offloading for mobile-edge computing with energy harvesting devices. IEEE Journal on Selected Areas in Communications 34(12):3590–3605 CrossRef
5.
Zurück zum Zitat Bozorgchenani A, Mashhadi F, Tarchi D, Monroy SS (2021) Multi-objective computation sharing in energy and delay constrained mobile edge computing environments. IEEE Transactions on Mobile Computing 20(10):2992–3005 CrossRef Bozorgchenani A, Mashhadi F, Tarchi D, Monroy SS (2021) Multi-objective computation sharing in energy and delay constrained mobile edge computing environments. IEEE Transactions on Mobile Computing 20(10):2992–3005 CrossRef
6.
Zurück zum Zitat Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Rodrigues, J.J., Sahalos, J.N.: Edge computing for offload-aware energy conservation using m2m recommendation mechanisms. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019). IEEE Mavromoustakis, C.X., Mastorakis, G., Batalla, J.M., Rodrigues, J.J., Sahalos, J.N.: Edge computing for offload-aware energy conservation using m2m recommendation mechanisms. In: 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–6 (2019). IEEE
7.
Zurück zum Zitat Cao K, Li L, Cui Y, Wei T, Hu S (2020) Exploring placement of heterogeneous edge servers for response time minimization in mobile edge-cloud computing. IEEE Transactions on Industrial Informatics 17(1):494–503 CrossRef Cao K, Li L, Cui Y, Wei T, Hu S (2020) Exploring placement of heterogeneous edge servers for response time minimization in mobile edge-cloud computing. IEEE Transactions on Industrial Informatics 17(1):494–503 CrossRef
8.
Zurück zum Zitat Xiang Z, Zheng Y, He M, Shi L, Wang D, Deng S, Zheng Z (2022) Energy-effective artificial internet-of-things application deployment in edge-cloud systems. Peer-to-Peer Networking and Applications 15(2):1029–1044 CrossRef Xiang Z, Zheng Y, He M, Shi L, Wang D, Deng S, Zheng Z (2022) Energy-effective artificial internet-of-things application deployment in edge-cloud systems. Peer-to-Peer Networking and Applications 15(2):1029–1044 CrossRef
9.
Zurück zum Zitat Yuan B, Guo S, Wang Q (2021) Joint service placement and request routing in mobile edge computing. Ad Hoc Networks 120:102543 CrossRef Yuan B, Guo S, Wang Q (2021) Joint service placement and request routing in mobile edge computing. Ad Hoc Networks 120:102543 CrossRef
10.
Zurück zum Zitat Ma S, Guo S, Wang K, Jia W, Guo M (2020) A cyclic game for service-oriented resource allocation in edge computing. IEEE Transactions on Services Computing 13(4):723–734 CrossRef Ma S, Guo S, Wang K, Jia W, Guo M (2020) A cyclic game for service-oriented resource allocation in edge computing. IEEE Transactions on Services Computing 13(4):723–734 CrossRef
11.
Zurück zum Zitat Luo J, Li J, Jiao L, Cai J (2020) On the effective parallelization and near-optimal deployment of service function chains. IEEE Transactions on Parallel and Distributed Systems 32(5):1238–1255 CrossRef Luo J, Li J, Jiao L, Cai J (2020) On the effective parallelization and near-optimal deployment of service function chains. IEEE Transactions on Parallel and Distributed Systems 32(5):1238–1255 CrossRef
12.
Zurück zum Zitat Mohajer A, Daliri MS, Mirzaei A, Ziaeddini A, Nabipour M, Bavaghar M (2022) Heterogeneous computational resource allocation for noma: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing 16(2):1225–1238 CrossRef Mohajer A, Daliri MS, Mirzaei A, Ziaeddini A, Nabipour M, Bavaghar M (2022) Heterogeneous computational resource allocation for noma: Toward green mobile edge-computing systems. IEEE Transactions on Services Computing 16(2):1225–1238 CrossRef
13.
Zurück zum Zitat Liu H, Long X, Li Z, Long S, Ran R, Wang H-M (2022) Joint optimization of request assignment and computing resource allocation in multi-access edge computing. IEEE Transactions on Services Computing 16(2):1254–1267 CrossRef Liu H, Long X, Li Z, Long S, Ran R, Wang H-M (2022) Joint optimization of request assignment and computing resource allocation in multi-access edge computing. IEEE Transactions on Services Computing 16(2):1254–1267 CrossRef
14.
Zurück zum Zitat Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet of Things Journal 8(8):6649–6664 CrossRef Liu T, Zhang Y, Zhu Y, Tong W, Yang Y (2021) Online computation offloading and resource scheduling in mobile-edge computing. IEEE Internet of Things Journal 8(8):6649–6664 CrossRef
15.
Zurück zum Zitat Ning Z, Dong P, Wang X, Wang S, Hu X, Guo S, Qiu T, Hu B, Kwok RY (2020) Distributed and dynamic service placement in pervasive edge computing networks. IEEE Transactions on Parallel and Distributed Systems 32(6):1277–1292 CrossRef Ning Z, Dong P, Wang X, Wang S, Hu X, Guo S, Qiu T, Hu B, Kwok RY (2020) Distributed and dynamic service placement in pervasive edge computing networks. IEEE Transactions on Parallel and Distributed Systems 32(6):1277–1292 CrossRef
16.
Zurück zum Zitat Guo S, Zhang K, Gong B, He W, Qiu X (2021) A delay-sensitive resource allocation algorithm for container cluster in edge computing environment. Computer Communications 170:144–150 CrossRef Guo S, Zhang K, Gong B, He W, Qiu X (2021) A delay-sensitive resource allocation algorithm for container cluster in edge computing environment. Computer Communications 170:144–150 CrossRef
17.
Zurück zum Zitat Bi S, Huang L, Wang H, Zhang Y-JA (2021) Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks. IEEE Transactions on Wireless Communications 20(11):7519–7537 CrossRef Bi S, Huang L, Wang H, Zhang Y-JA (2021) Lyapunov-guided deep reinforcement learning for stable online computation offloading in mobile-edge computing networks. IEEE Transactions on Wireless Communications 20(11):7519–7537 CrossRef
18.
Zurück zum Zitat Pereira J, Batista T, Cavalcante E, Souza A, Lopes F, Cacho N (2022) A platform for integrating heterogeneous data and developing smart city applications. Future Generation Computer Systems 128:552–566 CrossRef Pereira J, Batista T, Cavalcante E, Souza A, Lopes F, Cacho N (2022) A platform for integrating heterogeneous data and developing smart city applications. Future Generation Computer Systems 128:552–566 CrossRef
19.
Zurück zum Zitat Dustdar, S., Nastic, S., Scekic, O.: Smart cities - the internet of things, people and systems (2017) Dustdar, S., Nastic, S., Scekic, O.: Smart cities - the internet of things, people and systems (2017)
20.
Zurück zum Zitat Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z.: Toward a thousand lights:  Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3414–3421 (2020) Chen, C., Wei, H., Xu, N., Zheng, G., Yang, M., Xiong, Y., Xu, K., Li, Z.: Toward a thousand lights:  Decentralized deep reinforcement learning for large-scale traffic signal control. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3414–3421 (2020)
21.
Zurück zum Zitat Kaur K, Dhand T, Kumar N, Zeadally S (2017) Container-as-a-service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers. IEEE wireless communications 24(3):48–56 CrossRef Kaur K, Dhand T, Kumar N, Zeadally S (2017) Container-as-a-service at the edge: Trade-off between energy efficiency and service availability at fog nano data centers. IEEE wireless communications 24(3):48–56 CrossRef
22.
Zurück zum Zitat Hussein MK, Mousa MH, Alqarni MA (2019) A placement architecture for a container as a service (caas) in a cloud environment. Journal of Cloud Computing 8(1):1–15 Hussein MK, Mousa MH, Alqarni MA (2019) A placement architecture for a container as a service (caas) in a cloud environment. Journal of Cloud Computing 8(1):1–15
23.
Zurück zum Zitat Takouna, I., Dawoud, W., Meinel, C.: Accurate mutlicore processor power models for power-aware resource management. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp. 419–426 (2011). IEEE Takouna, I., Dawoud, W., Meinel, C.: Accurate mutlicore processor power models for power-aware resource management. In: 2011 IEEE Ninth International Conference on Dependable, Autonomic and Secure Computing, pp. 419–426 (2011). IEEE
24.
Zurück zum Zitat Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971 (2015) Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., Wierstra, D.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:​1509.​02971 (2015)
25.
Zurück zum Zitat Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1416–1424 (2018) Gao, H., Wang, Z., Ji, S.: Large-scale learnable graph convolutional networks. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1416–1424 (2018)
26.
Zurück zum Zitat Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871 (2019). PMLR Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph convolutional networks. In: International Conference on Machine Learning, pp. 6861–6871 (2019). PMLR
27.
Zurück zum Zitat Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870 (2018). PMLR Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870 (2018). PMLR
28.
Zurück zum Zitat Lee, K., Eoff, B., Caverlee, J.: Seven months with the devils: A long-term study of content polluters on twitter. (2011) Lee, K., Eoff, B., Caverlee, J.: Seven months with the devils: A long-term study of content polluters on twitter. (2011)
29.
Zurück zum Zitat Mahmood A, Ahmed A, Naeem M, Amirzada MR, Al-Dweik A (2022) Weighted utility aware computational overhead minimization of wireless power mobile edge cloud. Computer Communications 190:178–189 CrossRef Mahmood A, Ahmed A, Naeem M, Amirzada MR, Al-Dweik A (2022) Weighted utility aware computational overhead minimization of wireless power mobile edge cloud. Computer Communications 190:178–189 CrossRef
30.
Zurück zum Zitat Xiang Z, Zheng Y, Wang D, He M, Zhang C, Zheng Z (2022) Robust and cost-effective resource allocation for complex iot applications in edge-cloud collaboration. Mobile Networks and Applications 27(4):1506–1519 CrossRef Xiang Z, Zheng Y, Wang D, He M, Zhang C, Zheng Z (2022) Robust and cost-effective resource allocation for complex iot applications in edge-cloud collaboration. Mobile Networks and Applications 27(4):1506–1519 CrossRef
31.
Zurück zum Zitat Cao B, Fan S, Zhao J, Tian S, Zheng Z, Yan Y, Yang P (2021) Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems 22(6):3841–3849 CrossRef Cao B, Fan S, Zhao J, Tian S, Zheng Z, Yan Y, Yang P (2021) Large-scale many-objective deployment optimization of edge servers. IEEE Transactions on Intelligent Transportation Systems 22(6):3841–3849 CrossRef
32.
Zurück zum Zitat Das SR, Fujimoto RM (1997) An empirical evaluation of performance-memory trade-offs in time warp. IEEE Transactions on Parallel and Distributed Systems 8(2):210–224 CrossRef Das SR, Fujimoto RM (1997) An empirical evaluation of performance-memory trade-offs in time warp. IEEE Transactions on Parallel and Distributed Systems 8(2):210–224 CrossRef
33.
Zurück zum Zitat Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., Zomaya, A.Y.: Mobility-aware service composition in mobile communities. IEEE Trans. Systems, Man, and Cybernetics: Systems 47(3), 555–568 (2017) Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., Zomaya, A.Y.: Mobility-aware service composition in mobile communities. IEEE Trans. Systems, Man, and Cybernetics: Systems 47(3), 555–568 (2017)
34.
Zurück zum Zitat Fadlullah, Z.M., Mao, B., Kato, N.: Balancing qos and security in the edge: Existing practices, challenges, and 6g opportunities with machine learning. IEEE Communications Surveys & Tutorials (2022) Fadlullah, Z.M., Mao, B., Kato, N.: Balancing qos and security in the edge: Existing practices, challenges, and 6g opportunities with machine learning. IEEE Communications Surveys & Tutorials (2022)
Metadaten
Titel
Dynamic System Reconfiguration in Stable and Green Edge Service Provisioning
verfasst von
Zhengzhe Xiang
Dezhi Wang
Mengzhu He
Yuanyi Chen
Publikationsdatum
17.11.2023
Verlag
Springer US
Erschienen in
Mobile Networks and Applications
Print ISSN: 1383-469X
Elektronische ISSN: 1572-8153
DOI
https://doi.org/10.1007/s11036-023-02269-6