Skip to main content

2021 | OriginalPaper | Buchkapitel

Dynamic Time Division Scheduling Protocol for Medical Application Using Frog Synchronization Algorithm

verfasst von : Norhafizah Muhammad, Tiong Hoo Lim

Erschienen in: IoT Technologies for HealthCare

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different wireless sensing methods have been proposed for acquisition and measurement of body signals. In medical healthcare, it is critical that data are received simultaneously, processed, and analyzed in order to diagnose the disease accurately. For instance, to detect a patient with sleep apnea, it is necessary for the biosignals from dozens of biosensors including electroencephalography (EEG), electrocardiogram (ECG), photoplethysmogram (PPG), and peripheral oxygen saturation (Sp\(O_2\)) to be received in sequence it is used for diagnosis. However, it is difficult to accurately received these signals as their measurement frequencies are different from each other. Precise synchronization of the heartbeat with other measuring cycles of each biosensor is a critical attribute for identifying the correlation of each biosignal. Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) used in existing body area networks to guarantee the precise synchronization of multi-biosignals. This paper addressed this issue by proposing a bio-inspired Dynamic Time Division Scheduling Protocol (D-TDSP) based on the Frog Calling Algorithm (FCA) to adjust the timing of data transmission and to guarantee the synchronization of the sensing and receiving of multi-biosignals. The accuracy of the proposed algorithm is compared with the CSMA/CA method using a TelosB and XM1000 sensor nodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ashraf, D., Aboul Ella, H.: Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6), 5561–5595 (2011)CrossRef Ashraf, D., Aboul Ella, H.: Wearable and implantable wireless sensor network solutions for healthcare monitoring. Sensors 11(6), 5561–5595 (2011)CrossRef
2.
Zurück zum Zitat Campana, J., Gmelin, M., Schoechlin, J., Bolz, A.: Xml-based synchronization of mobile medical devices. Biomed. Eng. 47, 857–9 (2002)CrossRef Campana, J., Gmelin, M., Schoechlin, J., Bolz, A.: Xml-based synchronization of mobile medical devices. Biomed. Eng. 47, 857–9 (2002)CrossRef
3.
Zurück zum Zitat Dhruv, S., et al.: Wearable sensors for monitoring the physiological and biochemical profile of the athlete. Biomed. Eng. 47, 857–9 (2002)CrossRef Dhruv, S., et al.: Wearable sensors for monitoring the physiological and biochemical profile of the athlete. Biomed. Eng. 47, 857–9 (2002)CrossRef
4.
Zurück zum Zitat Ikkyu, A., Daichi, K., Yasuharu, H., Masayuki, M.: Mathematical modelling and application of frog choruses as an autonomous distributed communication system. R. Soc. Open Sci. 6, 181117 (2019)CrossRef Ikkyu, A., Daichi, K., Yasuharu, H., Masayuki, M.: Mathematical modelling and application of frog choruses as an autonomous distributed communication system. R. Soc. Open Sci. 6, 181117 (2019)CrossRef
5.
Zurück zum Zitat King, R.C., Villeneuve, E., White, R.J., Sherratt, R.S., Holderbaum, W., Harwin, W.S.: Application of data fusion techniques and technologies for wearable health monitoring. Med. Eng. Phys. 42, 1–12 (2017)CrossRef King, R.C., Villeneuve, E., White, R.J., Sherratt, R.S., Holderbaum, W., Harwin, W.S.: Application of data fusion techniques and technologies for wearable health monitoring. Med. Eng. Phys. 42, 1–12 (2017)CrossRef
6.
7.
Zurück zum Zitat Maik, P., Steffen, M., Timo, T., Matthias, G., Reinhold, O.: Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric patients. Biomed. Eng. 61(1), 57–68 (2016)CrossRef Maik, P., Steffen, M., Timo, T., Matthias, G., Reinhold, O.: Multi-modal signal acquisition using a synchronized wireless body sensor network in geriatric patients. Biomed. Eng. 61(1), 57–68 (2016)CrossRef
8.
Zurück zum Zitat Monton, E., et al.: Body area network for wireless patient monitoring. IET Commun. 2(2), 215–222 (2008)CrossRef Monton, E., et al.: Body area network for wireless patient monitoring. IET Commun. 2(2), 215–222 (2008)CrossRef
9.
Zurück zum Zitat Volmer, A., Orglmeister, R.: Wireless body sensor network for low-power motion-tolerant synchronized vital sign measurement. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3422–3425 (2008) Volmer, A., Orglmeister, R.: Wireless body sensor network for low-power motion-tolerant synchronized vital sign measurement. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3422–3425 (2008)
10.
Zurück zum Zitat Wang, L., Lou, Z., Jiang, K., Shen, G.: Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 1(5), 1900040 (2019)CrossRef Wang, L., Lou, Z., Jiang, K., Shen, G.: Bio-multifunctional smart wearable sensors for medical devices. Adv. Intell. Syst. 1(5), 1900040 (2019)CrossRef
11.
Zurück zum Zitat Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 142–153 (2005) Werner-Allen, G., Tewari, G., Patel, A., Welsh, M., Nagpal, R.: Firefly-inspired sensor network synchronicity with realistic radio effects. In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Systems, pp. 142–153 (2005)
12.
Zurück zum Zitat Yildirim, K.S., Gurcan, O.: Efficient time synchronization in a wireless sensor network by adaptive value tracking. IEEE Trans. Wirel. Commun. 13(7), 3650–3664 (2014)CrossRef Yildirim, K.S., Gurcan, O.: Efficient time synchronization in a wireless sensor network by adaptive value tracking. IEEE Trans. Wirel. Commun. 13(7), 3650–3664 (2014)CrossRef
Metadaten
Titel
Dynamic Time Division Scheduling Protocol for Medical Application Using Frog Synchronization Algorithm
verfasst von
Norhafizah Muhammad
Tiong Hoo Lim
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-69963-5_11