Skip to main content

2018 | OriginalPaper | Buchkapitel

6. Dynamical determinants for smooth hyperbolic dynamics

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As in Chapters 4 and 5, we consider a diffeomorphism on a hyperbolic basic set and a differentiable weight. In this chapter, we study the associated weighted dynamical determinant, giving a lower bound on the disc in which this determinant is analytic and where its zeroes admit a spectral interpretation. We apply the results obtained on the weighted dynamical determinant to study the dynamical zeta function.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Or an \(C^{r}\) Anosov diffeomorphism on a connected manifold \(M\), not necessarily transitive.
 
2
This is the same definition as (3.​4) in the expanding case, except that \(|\det(\mathrm{Id}-DT^{-m}(x))|\) there is replaced by \(|\det(\mathrm{Id}-DT^{m}(x))|\) here. This is because the transfer operator \(\mathcal{L}_{g}\) is now defined by forward composition with \(T\).
 
3
By Lemma A.3 and the perturbation results from §5.​3 one can construct examples of \(C^{r}\) hyperbolic diffeomorphisms with nontrivial resonances for \(r<\infty\).
 
4
See e.g. [178] or [105] for a definition of expansive and specification. Beware that expansive is not the same as expanding.
 
5
See (6.40) below for a more precise estimate.
 
6
As usual, if \(\inf|g||_{\Lambda}=0\) we approach \(|g|\) by non-vanishing functions. See Appendix B
 
7
The decomposition is independent of \(t\) and \(s\).
 
8
This choice is not essential in the proof of Proposition 6.9, but it will be important to prove Proposition 6.11.
 
9
See also [31, App C] and Footnote 28 of Chapter 4.
 
10
Or see Footnote 19.
 
11
See also [31, App C] and Footnote 28 of Chapter 4.
 
12
To write a formal proof involving charts, we may integrate by parts as many times as we like with respect to \(x\) in the relevant kernels, as in the second step of the proof of Lemma 6.9.
 
13
See also [31, App C] and Footnote 28 of Chapter 4.
 
14
Note that \(\mathrm{tr}\, \,\mathbb{T}_{x}^{m}\ne0\) only if \(x\in V\). If \(T^{m}(x)=x\) this implies \(x\in\Lambda\).
 
15
For the sake of comparison with [88], note that their transfer operator is defined by composing with \(T^{-1}\) so \(E^{s}\) there replaces \(E^{u}\) here.
 
16
See [73, 137] or [80].
 
17
Kitaev worked in the slightly more general setting of Mixed Transfer Operators.
 
18
In this respect, [68, Remark 2 after Thm 5] should be taken with a grain of salt.
 
Literatur
1.
10.
Zurück zum Zitat Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004) MathSciNetCrossRef Baillif, M.: Kneading operators, sharp determinants, and weighted Lefschetz zeta functions in higher dimensions. Duke Math. J. 124, 145–175 (2004) MathSciNetCrossRef
13.
17.
Zurück zum Zitat Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH Baladi, V.: The quest for the ultimate anisotropic Banach space. J. Stat. Phys. Special Volume for D. Ruelle and Ya. Sinai 166, 525–557 (2017) MathSciNetMATH
23.
Zurück zum Zitat Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997) Baladi, V., Kitaev, A., Ruelle, D., Semmes, S.: Sharp determinants and kneading operators for holomorphic maps. Tr. Mat. Inst. Steklova 216, Din. Sist. i Smezhnye Vopr., 193–235 (1997); translation in Proc. Steklov Inst. Math. 216, 186–228 (1997)
30.
Zurück zum Zitat Baladi, V., Tsujii, M.: Dynamical determinants for hyperbolic diffeomorphisms via dyadic decomposition, unpublished manuscript (2005) Baladi, V., Tsujii, M.: Dynamical determinants for hyperbolic diffeomorphisms via dyadic decomposition, unpublished manuscript (2005)
31.
Zurück zum Zitat Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef Baladi, V., Tsujii, M.: Dynamical determinants and spectrum for hyperbolic diffeomorphisms. In: Burns, K., Dolgopyat, D., Pesin, Ya. (eds.) Probabilistic and Geometric Structures in Dynamics, pp. 29–68, Contemp. Math., 469, Amer. Math. Soc., Providence, RI (2008) CrossRef
38.
64.
Zurück zum Zitat Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Annales ENS 49, 543–577 (2016) MathSciNetMATH Dyatlov, S., Zworski, M.: Dynamical zeta functions for Anosov flows via microlocal analysis. Annales ENS 49, 543–577 (2016) MathSciNetMATH
67.
Zurück zum Zitat Faure, F., Roy, N.: Ruelle–Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006) MathSciNetCrossRef Faure, F., Roy, N.: Ruelle–Pollicott resonances for real analytic hyperbolic maps. Nonlinearity 19, 1233–1252 (2006) MathSciNetCrossRef
68.
Zurück zum Zitat Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef Faure, F., Roy, N., Sjöstrand, J.: Semi-classical approach for Anosov diffeomorphisms and Ruelle resonances. Open Math. J. 1, 35–81 (2008) MathSciNetCrossRef
70.
Zurück zum Zitat Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anosov diffeomorphism. Astérisque No. 375. Soc. Math. France, Paris (2015) MATH Faure, F., Tsujii, M.: Prequantum transfer operator for symplectic Anosov diffeomorphism. Astérisque No. 375. Soc. Math. France, Paris (2015) MATH
71.
Zurück zum Zitat Faure, F., Tsujii, M.: Band structure of the Ruelle spectrum of contact Anosov flows. C.R. Acad. Sci. Paris, Ser. I. 351, 385–391 (2013) MathSciNetCrossRef Faure, F., Tsujii, M.: Band structure of the Ruelle spectrum of contact Anosov flows. C.R. Acad. Sci. Paris, Ser. I. 351, 385–391 (2013) MathSciNetCrossRef
72.
Zurück zum Zitat Faure, F., Tsujii, M.: The semiclassical zeta function for geodesic flows on negatively curved manifolds. Invent. Math. 208, 851–998 (2017) MathSciNetCrossRef Faure, F., Tsujii, M.: The semiclassical zeta function for geodesic flows on negatively curved manifolds. Invent. Math. 208, 851–998 (2017) MathSciNetCrossRef
73.
74.
75.
Zurück zum Zitat Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995) MathSciNetCrossRef Fried, D.: The flat-trace asymptotics of a uniform system of contractions. Ergodic Theory Dynam. Systems 15, 1061–1073 (1995) MathSciNetCrossRef
80.
Zurück zum Zitat Giulietti, P., Liverani, C., Pollicott, M.: Anosov flows and dynamical zeta functions. Annals of Mathematics 178, 687–773 (2013) MathSciNetCrossRef Giulietti, P., Liverani, C., Pollicott, M.: Anosov flows and dynamical zeta functions. Annals of Mathematics 178, 687–773 (2013) MathSciNetCrossRef
87.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Banach spaces adapted to Anosov systems. Ergodic Theory Dynam. Systems 26, 189–217 (2006) MathSciNetCrossRef
88.
Zurück zum Zitat Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef Gouëzel, S., Liverani, C.: Compact locally maximal hyperbolic sets for smooth maps: fine statistical properties. J. Differential Geom., 79, 433–477 (2008) MathSciNetCrossRef
96.
Zurück zum Zitat Hille, E: Analytic function theory. Vol. 1. Introduction to Higher Mathematics, Ginn and Company, Boston (1959) MATH Hille, E: Analytic function theory. Vol. 1. Introduction to Higher Mathematics, Ginn and Company, Boston (1959) MATH
105.
Zurück zum Zitat Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995) CrossRef
112.
Zurück zum Zitat Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef Kitaev, A.Yu.: Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness. Nonlinearity 12, 141–179 (1999). Corrigendum: “Fredholm determinants for hyperbolic diffeomorphisms of finite smoothness”. Nonlinearity 12, 1717–1719 (1999) MathSciNetCrossRef
119.
Zurück zum Zitat Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005) MathSciNetCrossRef Liverani, C.: Fredholm determinants, Anosov maps and Ruelle resonances. Discrete Contin. Dyn. Syst. 13, 1203–1215 (2005) MathSciNetCrossRef
120.
122.
Zurück zum Zitat Mayer, D.: The Ruelle–Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Phys. 123, Springer-Verlag, Berlin-New York (1980) MATH Mayer, D.: The Ruelle–Araki Transfer Operator in Classical Statistical Mechanics. Lecture Notes in Phys. 123, Springer-Verlag, Berlin-New York (1980) MATH
127.
Zurück zum Zitat Naud, F.: Anosov diffeomorphisms with non-trivial Ruelle spectrum. Personal communication (June 2015) Naud, F.: Anosov diffeomorphisms with non-trivial Ruelle spectrum. Personal communication (June 2015)
131.
Zurück zum Zitat Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH Parry, W., Pollicott, M.: Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque No. 187–188. Soc. Math. France, Paris (1990) MATH
137.
150.
151.
Zurück zum Zitat Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef Rugh, H.H.: Generalized Fredholm determinants and Selberg zeta functions for Axiom A dynamical systems. Ergodic Theory Dynam. Systems 16, 805–819 (1996) MathSciNetCrossRef
160.
Zurück zum Zitat Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Analytic expanding circle maps with explicit spectra. Nonlinearity 26, 3231–3245 (2013) MathSciNetCrossRef
161.
Zurück zum Zitat Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef Slipantschuk, J., Bandtlow, O.F., Just, W.: Complete spectral data for analytic Anosov maps of the torus. Nonlinearity 30, 2667–2686 (2017) MathSciNetCrossRef
164.
Zurück zum Zitat Tangerman, F.: Meromorphic Continuation of Ruelle Zeta Functions (Heat Operators). Ph.D. thesis, Boston (1986) Tangerman, F.: Meromorphic Continuation of Ruelle Zeta Functions (Heat Operators). Ph.D. thesis, Boston (1986)
173.
Zurück zum Zitat Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495–1545 (2010) MathSciNetCrossRef Tsujii, M.: Quasi-compactness of transfer operators for contact Anosov flows. Nonlinearity 23, 1495–1545 (2010) MathSciNetCrossRef
174.
Zurück zum Zitat Tsujii, M.: Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform. Ergodic Theory Dynam. Systems 32, 2083–2118 (2012) MathSciNetCrossRef Tsujii, M.: Contact Anosov flows and the Fourier-Bros-Iagolnitzer transform. Ergodic Theory Dynam. Systems 32, 2083–2118 (2012) MathSciNetCrossRef
178.
Zurück zum Zitat Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH Walters, P.: An introduction to ergodic theory. Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin (1982) MATH
Metadaten
Titel
Dynamical determinants for smooth hyperbolic dynamics
verfasst von
Viviane Baladi
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-77661-3_6