Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2021

13.10.2020 | Original Research

Dynamical response of an eco-epidemiological system with harvesting

verfasst von: Harekrishna Das, Absos Ali Shaikh

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This article presents a study of Leslie–Gower predator–prey system to investigate the dynamics of disease transmission among predator species. The system includes the harvesting of infected predator. The positivity, boundedness of the solutions and permanence of the system are taken into consideration. The stability and Hopf bifurcation analyses around biologically feasible equilibria are scrutinized. The harvesting of infected predator plays a crucial role for the occurrence of limit cycle oscillations and stability around the interior equilibrium point. Our results disclose that infected predator harvesting has a considerable consequence on the eco-epidemiological system. The optimal control theory has been applied to investigate optimal strategies for controlling the infection. Analytical findings are confirmed through numerical simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Amalia, R.D., Arif, D.K.: Optimal control of predator-prey mathematical model with infection and harvesting on prey. J. Phys.: Conf. Ser. 974(1), 012050 (2018) Amalia, R.D., Arif, D.K.: Optimal control of predator-prey mathematical model with infection and harvesting on prey. J. Phys.: Conf. Ser. 974(1), 012050 (2018)
2.
Zurück zum Zitat Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. Roy. Soc. B 314, 533–570 (1986) Anderson, R.M., May, R.M.: The invasion, persistence and spread of infectious diseases within animal and plant communities. Phil. Trans. Roy. Soc. B 314, 533–570 (1986)
3.
Zurück zum Zitat Arino, O., El Abdllaoul, A., Micram, J., Chattopadhyay, J.: Infection in prey population may act as a biological control in ratio-dependent predator-prey models. Nonlinearity 17, 1101–1116 (2004)MathSciNetCrossRef Arino, O., El Abdllaoul, A., Micram, J., Chattopadhyay, J.: Infection in prey population may act as a biological control in ratio-dependent predator-prey models. Nonlinearity 17, 1101–1116 (2004)MathSciNetCrossRef
4.
Zurück zum Zitat Bairagi, N., Chaudhuri, S., Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system–a theoretical study. Math. Biosci. 217, 134–144 (2009)MathSciNetCrossRef Bairagi, N., Chaudhuri, S., Chattopadhyay, J.: Harvesting as a disease control measure in an eco-epidemiological system–a theoretical study. Math. Biosci. 217, 134–144 (2009)MathSciNetCrossRef
5.
Zurück zum Zitat Bhattacharyya, R., Mukhopadhyay, B.: On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives. Nonlinear Anal. Real World Appl. 11, 3824–3833 (2010)MathSciNetCrossRef Bhattacharyya, R., Mukhopadhyay, B.: On an eco-epidemiological model with prey harvesting and predator switching: local and global perspectives. Nonlinear Anal. Real World Appl. 11, 3824–3833 (2010)MathSciNetCrossRef
6.
Zurück zum Zitat Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F.: Chattopadhyay, J: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dynam. 87, 1553–1573 (2017)CrossRef Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F.: Chattopadhyay, J: Optimal harvesting and complex dynamics in a delayed eco-epidemiological model with weak Allee effects. Nonlinear Dynam. 87, 1553–1573 (2017)CrossRef
7.
Zurück zum Zitat Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F., Chattopadhyay, J.: A delayed prey-predator system with prey subject to the strong Allee effect and disease. Nonlinear Dynam. 84(3), 1569–1594 (2016)MathSciNetCrossRef Biswas, S., Saifuddin, M., Sasmal, S.K., Samanta, S., Pal, N., Ababneh, F., Chattopadhyay, J.: A delayed prey-predator system with prey subject to the strong Allee effect and disease. Nonlinear Dynam. 84(3), 1569–1594 (2016)MathSciNetCrossRef
8.
Zurück zum Zitat Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)MATH Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)MATH
9.
Zurück zum Zitat Brauer, F., Kribs, C.: Dynamical Systems for Biological Modeling: An Introduction. CRC Press, Boca Raton (2015)CrossRef Brauer, F., Kribs, C.: Dynamical Systems for Biological Modeling: An Introduction. CRC Press, Boca Raton (2015)CrossRef
10.
Zurück zum Zitat Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)MATH Clark, C.W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources. Wiley, New York (1990)MATH
11.
Zurück zum Zitat Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)MathSciNetCrossRef Dai, G., Tang, M.: Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math. 58, 193–210 (1998)MathSciNetCrossRef
12.
Zurück zum Zitat Das, K.P.: A study of harvesting in a predator-prey model with disease in both populations. Math. Methods Appl. Sci. 39(11), 2853–2870 (2016)MathSciNetCrossRef Das, K.P.: A study of harvesting in a predator-prey model with disease in both populations. Math. Methods Appl. Sci. 39(11), 2853–2870 (2016)MathSciNetCrossRef
13.
Zurück zum Zitat Gard, T.C., Hallam, T.G.: Persistece in food webs-I Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)MathSciNetMATH Gard, T.C., Hallam, T.G.: Persistece in food webs-I Lotka-Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)MathSciNetMATH
14.
Zurück zum Zitat Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dynam. 88(2), 1501–1533 (2017)MathSciNetCrossRef Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction-diffusion predator-prey model with both refuge and harvesting. Nonlinear Dynam. 88(2), 1501–1533 (2017)MathSciNetCrossRef
15.
Zurück zum Zitat Hu, G.P., Li, X.L.: Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey. Chaos Solitons Fractals 45(3), 229–237 (2012)MathSciNetCrossRef Hu, G.P., Li, X.L.: Stability and Hopf bifurcation for a delayed predator-prey model with disease in the prey. Chaos Solitons Fractals 45(3), 229–237 (2012)MathSciNetCrossRef
16.
Zurück zum Zitat Jana, S., Guria, S., Das, U., Kar, T.K., Ghorai, A.: Effect of harvesting and infection on predator in a prey-predator system. Nonlinear Dynam. 81(1–2), 1–14 (2015)MathSciNetMATH Jana, S., Guria, S., Das, U., Kar, T.K., Ghorai, A.: Effect of harvesting and infection on predator in a prey-predator system. Nonlinear Dynam. 81(1–2), 1–14 (2015)MathSciNetMATH
17.
Zurück zum Zitat Jiao, J.J., Chen, L.S., Nieto, J.J., Angela, T.: Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey. Appl. Math. Mech. 29(5), 653–663 (2008)MathSciNetCrossRef Jiao, J.J., Chen, L.S., Nieto, J.J., Angela, T.: Permanence and global attractivity of stage-structured predator-prey model with continuous harvesting on predator and impulsive stocking on prey. Appl. Math. Mech. 29(5), 653–663 (2008)MathSciNetCrossRef
18.
Zurück zum Zitat Johri, A., Trivedi, N., Sisodiya, A., Sing, B., Jain, S.: Study of a prey-predator model with disease prey. Int. J. Contemp. Math. Sci. 7(9), 489–498 (2012)MathSciNetMATH Johri, A., Trivedi, N., Sisodiya, A., Sing, B., Jain, S.: Study of a prey-predator model with disease prey. Int. J. Contemp. Math. Sci. 7(9), 489–498 (2012)MathSciNetMATH
19.
Zurück zum Zitat Kant, S., Kumar, V.: Stability analysis of predator-prey system with migrating prey and disease infection in both specise. Appl. Math. Model. 42, 509–539 (2017)MathSciNetCrossRef Kant, S., Kumar, V.: Stability analysis of predator-prey system with migrating prey and disease infection in both specise. Appl. Math. Model. 42, 509–539 (2017)MathSciNetCrossRef
20.
Zurück zum Zitat Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-part I. Proc. Roy. Soc. Edinburgh Sect. A 115, 700–721 (1927)MATH Kermack, W.O., McKendrick, A.G.: Contributions to the mathematical theory of epidemics-part I. Proc. Roy. Soc. Edinburgh Sect. A 115, 700–721 (1927)MATH
21.
Zurück zum Zitat Kong, F., Nieto, J.J. : Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms. Discrete Cont. Dyn. B 25(11) (2019) Kong, F., Nieto, J.J. : Almost periodic dynamical behaviors of the hematopoiesis model with mixed discontinuous harvesting terms. Discrete Cont. Dyn. B 25(11) (2019)
22.
Zurück zum Zitat Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1924)MATH Lotka, A.J.: Elements of Physical Biology. Williams and Wilkins, Baltimore (1924)MATH
23.
Zurück zum Zitat Meng, X.Y., Qin, N.N., Huo, H.F.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol. Dyn. 12(1), 342–374 (2018)MathSciNetCrossRef Meng, X.Y., Qin, N.N., Huo, H.F.: Dynamics analysis of a predator-prey system with harvesting prey and disease in prey species. J. Biol. Dyn. 12(1), 342–374 (2018)MathSciNetCrossRef
25.
Zurück zum Zitat Nandi, S.K., Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Prey-predator model with two-stage infection in prey: concerning pest control. J. Nonlinear Dynam. 2015, 1–13 (2015)CrossRef Nandi, S.K., Mondal, P.K., Jana, S., Haldar, P., Kar, T.K.: Prey-predator model with two-stage infection in prey: concerning pest control. J. Nonlinear Dynam. 2015, 1–13 (2015)CrossRef
26.
Zurück zum Zitat Pontryagin, L.S., Boltianskii, V. G., Gamkrelidze, R. V., Mishchenko, E.F.: The mathematical theory of optimal processes. New York (1962) Pontryagin, L.S., Boltianskii, V. G., Gamkrelidze, R. V., Mishchenko, E.F.: The mathematical theory of optimal processes. New York (1962)
27.
Zurück zum Zitat Purnomo, A.S., Darti, I., Suryanto, A.: Dynamics of eco-epidemiological model with harvesting. AIP Conference Proceedings 1913(1), 020018 (2017)CrossRef Purnomo, A.S., Darti, I., Suryanto, A.: Dynamics of eco-epidemiological model with harvesting. AIP Conference Proceedings 1913(1), 020018 (2017)CrossRef
28.
Zurück zum Zitat Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG-Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011)CrossRef Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG-Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011)CrossRef
29.
Zurück zum Zitat Shaikh, A.A., Das, H., Ali, N.: Study of LG-Holling type III predator-prey model with disease in predator. J. Appl. Math. Comput. 58, 235–255 (2018)MathSciNetCrossRef Shaikh, A.A., Das, H., Ali, N.: Study of LG-Holling type III predator-prey model with disease in predator. J. Appl. Math. Comput. 58, 235–255 (2018)MathSciNetCrossRef
30.
Zurück zum Zitat Sharma, S., Samanta, G.P.: Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyn. Control 3(3), 210–224 (2015)MathSciNetCrossRef Sharma, S., Samanta, G.P.: Analysis of a two prey one predator system with disease in the first prey population. Int. J. Dyn. Control 3(3), 210–224 (2015)MathSciNetCrossRef
31.
Zurück zum Zitat Sharma, S., Samanta, G.P.: A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals 70, 69–84 (2015)MathSciNetCrossRef Sharma, S., Samanta, G.P.: A Leslie-Gower predator-prey model with disease in prey incorporating a prey refuge. Chaos Solitons Fractals 70, 69–84 (2015)MathSciNetCrossRef
32.
Zurück zum Zitat Singh, M.K., Bhadauria, B.S., Singh, B.K.: Qualitative analysis of a Leslie-Gower predator-prey system with nonlinear harvesting in predator. Int. J. Eng. Math. 2016, 1–15 (2016)CrossRef Singh, M.K., Bhadauria, B.S., Singh, B.K.: Qualitative analysis of a Leslie-Gower predator-prey system with nonlinear harvesting in predator. Int. J. Eng. Math. 2016, 1–15 (2016)CrossRef
33.
Zurück zum Zitat Sujatha, K., Gunasekaran, M.: Qualitative and quantitative approaches in dynamics of two different prey-predator systems. IJSCE 5, 76–80 (2015) Sujatha, K., Gunasekaran, M.: Qualitative and quantitative approaches in dynamics of two different prey-predator systems. IJSCE 5, 76–80 (2015)
34.
Zurück zum Zitat Sujatha, K., Gunasekaran, M.: Two ways stability analysis of predator - prey system with diseased prey population. IJES 4, 61–66 (2015) Sujatha, K., Gunasekaran, M.: Two ways stability analysis of predator - prey system with diseased prey population. IJES 4, 61–66 (2015)
35.
Zurück zum Zitat Sujatha, K., Gunasekaran, M.: Dynamic in a harvested prey-predator model with susceptible-infected-susceptible (SIS) epidemic disease in the prey. Adv. Appl. Math. Biosci 7, 23–31 (2016) Sujatha, K., Gunasekaran, M.: Dynamic in a harvested prey-predator model with susceptible-infected-susceptible (SIS) epidemic disease in the prey. Adv. Appl. Math. Biosci 7, 23–31 (2016)
36.
Zurück zum Zitat Volterra, V., Memoria della, R.: Accademica Nazionale Dei Lincei. Translation: Animal Ecology. McGraw-Hill, New York (1926) Volterra, V., Memoria della, R.: Accademica Nazionale Dei Lincei. Translation: Animal Ecology. McGraw-Hill, New York (1926)
37.
Zurück zum Zitat Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)MATH Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn. Springer, New York (2003)MATH
38.
Zurück zum Zitat Xu, R., Zhang, S.H.: Modelling and analysis of a delayed predator-prey model with disease in the predator. Appl. Math. Comput. 224, 372–386 (2013)MathSciNetMATH Xu, R., Zhang, S.H.: Modelling and analysis of a delayed predator-prey model with disease in the predator. Appl. Math. Comput. 224, 372–386 (2013)MathSciNetMATH
39.
Zurück zum Zitat Zhang, J.S., Sun, L.: Analysis of eco-epidemiological model with epidemic in the predator. J. Biomath. 20(2), 157–164 (2005)MathSciNetMATH Zhang, J.S., Sun, L.: Analysis of eco-epidemiological model with epidemic in the predator. J. Biomath. 20(2), 157–164 (2005)MathSciNetMATH
40.
Zurück zum Zitat Zhang, Y., Chen, S., Gao, S., Fan, K., Wang, Q.: A new non-autonomous model for migratory birds with Leslie-Gower Holling-type II schemes and saturation recovery rate. Math. Comput. Simulation 132, 289–306 (2017)MathSciNetCrossRef Zhang, Y., Chen, S., Gao, S., Fan, K., Wang, Q.: A new non-autonomous model for migratory birds with Leslie-Gower Holling-type II schemes and saturation recovery rate. Math. Comput. Simulation 132, 289–306 (2017)MathSciNetCrossRef
41.
Zurück zum Zitat Zhang, Z., Upadhyay, R.K., Datta, J.: Bifurcation analysis of a modified Leslie-Gower model with Holling type-IV functional response and nonlinear prey harvesting. Adv. Difference Equ. 2018(1), 127 (2018)MathSciNetCrossRef Zhang, Z., Upadhyay, R.K., Datta, J.: Bifurcation analysis of a modified Leslie-Gower model with Holling type-IV functional response and nonlinear prey harvesting. Adv. Difference Equ. 2018(1), 127 (2018)MathSciNetCrossRef
Metadaten
Titel
Dynamical response of an eco-epidemiological system with harvesting
verfasst von
Harekrishna Das
Absos Ali Shaikh
Publikationsdatum
13.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2021
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01379-8

Weitere Artikel der Ausgabe 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Zur Ausgabe

Original Research

Lucas graphs