Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2020

13.10.2019 | Original Research

Dynamics of an eco-epidemiological system with disease in competitive prey species

verfasst von: Absos Ali Shaikh, Harekrishna Das, Sahabuddin Sarwardi

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of the present paper is to investigate the dynamics of an eco-epidemiological system with predator’s hyperbolic mortality and Holling type II functional response. The local stability, global stability of the ecosystem near biologically feasible equilibria have been thoroughly investigated. The boundedness and positivity of solutions for the model are also derived. Threshold values for a few parameters, which determine the feasibility and stability of some equilibria are calculated and a threshold is identified for the disease to die out. The existence of Hopf bifurcation around the coexistence equilibrium is shown. Finally, numerical illustrations are performed in order to validate some of the important analytical findings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97(S45), 5–60 (1965) Holling, C.S.: The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 97(S45), 5–60 (1965)
2.
Zurück zum Zitat Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22(2), 113–128 (2005)MATH Korobeinikov, A., Maini, P.K.: Non-linear incidence and stability of infectious disease models. Math. Med. Biol. 22(2), 113–128 (2005)MATH
3.
Zurück zum Zitat Murray, J.D.: Mathematical Biology-II Spatial Models and Biomedical Applications. Springer, New York (2001) Murray, J.D.: Mathematical Biology-II Spatial Models and Biomedical Applications. Springer, New York (2001)
4.
Zurück zum Zitat Sarwardi, S., Haque, M., Mandal, P.K.: Persistence and global stability of Bazykin predator–prey model with Beddington–DeAngelis response function. Commun. Nonlinear Sci. Numer. Simul. 19(1), 189–209 (2013)MathSciNetMATH Sarwardi, S., Haque, M., Mandal, P.K.: Persistence and global stability of Bazykin predator–prey model with Beddington–DeAngelis response function. Commun. Nonlinear Sci. Numer. Simul. 19(1), 189–209 (2013)MathSciNetMATH
5.
Zurück zum Zitat Yang, R.: Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay. Chaos Solitons Fract. 95, 131–139 (2017)MathSciNetMATH Yang, R.: Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay. Chaos Solitons Fract. 95, 131–139 (2017)MathSciNetMATH
6.
Zurück zum Zitat Hu, G., Li, X., Lu, S.: Qualitative analysis of a diffusive three-species model with the Holling–Tanner scheme. Bull. Malays. Math. Sci. Soc. 40(1), 35–50 (2017)MathSciNetMATH Hu, G., Li, X., Lu, S.: Qualitative analysis of a diffusive three-species model with the Holling–Tanner scheme. Bull. Malays. Math. Sci. Soc. 40(1), 35–50 (2017)MathSciNetMATH
7.
Zurück zum Zitat Manna, D., Maiti, A., Samanta, G.P.: A Michaelis–Menten type food chain model with strong Allee effect on the prey. Math. Methods Appl. Sci. 40(1), 146–166 (2017)MathSciNetMATH Manna, D., Maiti, A., Samanta, G.P.: A Michaelis–Menten type food chain model with strong Allee effect on the prey. Math. Methods Appl. Sci. 40(1), 146–166 (2017)MathSciNetMATH
8.
Zurück zum Zitat Liu, W., Jiang, Y., Chen, Y.: Dynamic properties of a delayed predator–prey system with Ivlev-type functional response. Nonlinear Dyn. 84(2), 743–754 (2017)MathSciNetMATH Liu, W., Jiang, Y., Chen, Y.: Dynamic properties of a delayed predator–prey system with Ivlev-type functional response. Nonlinear Dyn. 84(2), 743–754 (2017)MathSciNetMATH
9.
Zurück zum Zitat Pielou, E.C.: Population and Community Ecology: Principles and Methods. CRC Press, Boca Raton (1974)MATH Pielou, E.C.: Population and Community Ecology: Principles and Methods. CRC Press, Boca Raton (1974)MATH
10.
Zurück zum Zitat Ali, N., Chakravarty, S.: Stability analysis of a food chain model consisting of two competitive preys and one predator. Nonlinear Dyn. 82(3), 1303–1316 (2015)MathSciNetMATH Ali, N., Chakravarty, S.: Stability analysis of a food chain model consisting of two competitive preys and one predator. Nonlinear Dyn. 82(3), 1303–1316 (2015)MathSciNetMATH
11.
Zurück zum Zitat Ali, N., Haque, M., Venturino, E., Chakravarty, S.: Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator. Comput. Biol. Med. 85, 63–74 (2017) Ali, N., Haque, M., Venturino, E., Chakravarty, S.: Dynamics of a three species ratio-dependent food chain model with intra-specific competition within the top predator. Comput. Biol. Med. 85, 63–74 (2017)
12.
Zurück zum Zitat El-Gohary, A., Al-Ruzaiza, A.S.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons Fract. 34(2), 443–453 (2007)MathSciNetMATH El-Gohary, A., Al-Ruzaiza, A.S.: Chaos and adaptive control in two prey, one predator system with nonlinear feedback. Chaos Solitons Fract. 34(2), 443–453 (2007)MathSciNetMATH
13.
Zurück zum Zitat Gakkhar, S.: Existence of chaos in two-prey, one-predator system. Chaos Solitons Fract. 17(4), 639–649 (2003)MathSciNetMATH Gakkhar, S.: Existence of chaos in two-prey, one-predator system. Chaos Solitons Fract. 17(4), 639–649 (2003)MathSciNetMATH
14.
Zurück zum Zitat Klebanoff, A., Hastings, A.: Chaos in one-predator, two-prey models: cgeneral results from bifurcation theory. Math. Biosci. 122(2), 221–233 (1994)MathSciNetMATH Klebanoff, A., Hastings, A.: Chaos in one-predator, two-prey models: cgeneral results from bifurcation theory. Math. Biosci. 122(2), 221–233 (1994)MathSciNetMATH
15.
Zurück zum Zitat Aziz-Alaoui, M.A.: Study of a Leslie–Gower-type tritrophic population model. Chaos Solitons Fract. 14(8), 1275–1293 (2002)MathSciNetMATH Aziz-Alaoui, M.A.: Study of a Leslie–Gower-type tritrophic population model. Chaos Solitons Fract. 14(8), 1275–1293 (2002)MathSciNetMATH
16.
Zurück zum Zitat Haque, M., Ali, N., Chakravarty, S.: Study of a tri-trophic prey-dependent food chain model of interacting populations. Math. Biosci. 246(1), 55–71 (2013)MathSciNetMATH Haque, M., Ali, N., Chakravarty, S.: Study of a tri-trophic prey-dependent food chain model of interacting populations. Math. Biosci. 246(1), 55–71 (2013)MathSciNetMATH
17.
Zurück zum Zitat Banshidhar, S., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37, 5653–5663 (2013)MathSciNetMATH Banshidhar, S., Poria, S.: Disease control in a food chain model supplying alternative food. Appl. Math. Model. 37, 5653–5663 (2013)MathSciNetMATH
18.
Zurück zum Zitat Anderson, R.M., May, R.M.: Population Biology of Infectious Disease. Springer, Berlin (1982) Anderson, R.M., May, R.M.: Population Biology of Infectious Disease. Springer, Berlin (1982)
19.
Zurück zum Zitat Anderson, R.M., May, R.M.: Infectous Disease of Humans, Dynamics and Control. Oxford University Press, Oxford (1991) Anderson, R.M., May, R.M.: Infectous Disease of Humans, Dynamics and Control. Oxford University Press, Oxford (1991)
20.
Zurück zum Zitat Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160(2), 191–213 (1999)MathSciNetMATH Li, M.Y., Graef, J.R., Wang, L., Karsai, J.: Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160(2), 191–213 (1999)MathSciNetMATH
21.
Zurück zum Zitat Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27(6), 609–631 (1989)MathSciNetMATH Hadeler, K.P., Freedman, H.I.: Predator–prey populations with parasitic infection. J. Math. Biol. 27(6), 609–631 (1989)MathSciNetMATH
22.
Zurück zum Zitat Venturino, E.: The influence of diseases on Lotka–Volterra systems. Rocky Mt. J. Math 24, 381–402 (1994)MathSciNetMATH Venturino, E.: The influence of diseases on Lotka–Volterra systems. Rocky Mt. J. Math 24, 381–402 (1994)MathSciNetMATH
23.
Zurück zum Zitat Kar, T.K., Mondal, P.K.: Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal. Real World Appl. 12(4), 2058–2068 (2011)MathSciNetMATH Kar, T.K., Mondal, P.K.: Global dynamics and bifurcation in delayed SIR epidemic model. Nonlinear Anal. Real World Appl. 12(4), 2058–2068 (2011)MathSciNetMATH
24.
Zurück zum Zitat Mondal, P.K., Kar, T.K.: Optimal treatment control and bifurcation analysis of a tuberculosis model with effect of multiple re-infections. Int. J. Dyn. Control 5(2), 367–380 (2017)MathSciNet Mondal, P.K., Kar, T.K.: Optimal treatment control and bifurcation analysis of a tuberculosis model with effect of multiple re-infections. Int. J. Dyn. Control 5(2), 367–380 (2017)MathSciNet
25.
Zurück zum Zitat Freedman, H.I.: A model of predator–prey dynamics modified by the action of a parasite. Math. Biosci 99, 143–155 (1990)MathSciNetMATH Freedman, H.I.: A model of predator–prey dynamics modified by the action of a parasite. Math. Biosci 99, 143–155 (1990)MathSciNetMATH
26.
Zurück zum Zitat Chattapadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)MathSciNetMATH Chattapadhyay, J., Arino, O.: A predator–prey model with disease in the prey. Nonlinear Anal. 36, 747–766 (1999)MathSciNetMATH
27.
Zurück zum Zitat Chattapadhyay, J., Pal, S., Abdllaoui, A.E.I.: Classical predator–prey system with infection of prey population-a mathematical model. Math. Methods Appl. Sci 26, 1211–1222 (2003)MathSciNetMATH Chattapadhyay, J., Pal, S., Abdllaoui, A.E.I.: Classical predator–prey system with infection of prey population-a mathematical model. Math. Methods Appl. Sci 26, 1211–1222 (2003)MathSciNetMATH
28.
Zurück zum Zitat Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)MathSciNetMATH Xiao, Y., Chen, L.: Modeling and analysis of a predator–prey model with disease in the prey. Math. Biosci. 171(1), 59–82 (2001)MathSciNetMATH
29.
Zurück zum Zitat Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS 7(2), 39–60 (2006)MATH Haque, M., Venturino, E.: Increase of the prey may decrease the healthy predator population in presence of a disease in the predator. HERMIS 7(2), 39–60 (2006)MATH
30.
Zurück zum Zitat Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predators; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)MathSciNetMATH Haque, M., Venturino, E.: An ecoepidemiological model with disease in the predators; the ratio-dependent case. Math. Methods Appl. Sci. 30, 1791–1809 (2007)MathSciNetMATH
31.
Zurück zum Zitat Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)MATH Venturino, E.: Epidemics in predator–prey models: disease in the predators. IMA J. Math. Appl. Med. Biol. 19, 185–205 (2002)MATH
32.
Zurück zum Zitat Guo, H.J., Song, X.Y.: An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos Solitons Fract. 36, 1320–1331 (2008)MathSciNetMATH Guo, H.J., Song, X.Y.: An impulsive predator–prey system with modified Leslie–Gower and Holling type II schemes. Chaos Solitons Fract. 36, 1320–1331 (2008)MathSciNetMATH
33.
Zurück zum Zitat Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie–Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. Real World Appl. 9(1), 64–79 (2008)MathSciNetMATH Song, X., Li, Y.: Dynamic behaviors of the periodic predator-prey model with modified Leslie–Gower Holling-type II schemes and impulsive effect. Nonlinear Anal. Real World Appl. 9(1), 64–79 (2008)MathSciNetMATH
34.
Zurück zum Zitat Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG–Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011) Sarwardi, S., Haque, M., Venturino, E.: Global stability and persistence in LG–Holling type II diseased predator ecosystems. J. Biol. Phys. 37(6), 91–106 (2011)
35.
Zurück zum Zitat Sarwardi, S., Haque, M., Venturino, E.: A Leslie–Gower Holling-type II ecoepidemic model. J. Appl. Math. Comput. 35(1), 263–280 (2011)MathSciNetMATH Sarwardi, S., Haque, M., Venturino, E.: A Leslie–Gower Holling-type II ecoepidemic model. J. Appl. Math. Comput. 35(1), 263–280 (2011)MathSciNetMATH
36.
Zurück zum Zitat Shaikh, A.A., Das, H., Ali, N.: Study of LG–Holling type III predator–prey model with disease in predator. J. Appl. Math. Comput. 43, 1–21 (2017)MATH Shaikh, A.A., Das, H., Ali, N.: Study of LG–Holling type III predator–prey model with disease in predator. J. Appl. Math. Comput. 43, 1–21 (2017)MATH
37.
Zurück zum Zitat Murray, J.D.: Mathematical Biology-I, 3rd edn. Springer, Berlin (2001) Murray, J.D.: Mathematical Biology-I, 3rd edn. Springer, Berlin (2001)
38.
Zurück zum Zitat Nagano, S., Maeda, Y.: Phase transitions in predator–prey systems. Phys. Rev. E 85, 011915 (2012) Nagano, S., Maeda, Y.: Phase transitions in predator–prey systems. Phys. Rev. E 85, 011915 (2012)
39.
Zurück zum Zitat Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting. Nonlinear Dyn. 88(2), 1501–1533 (2017)MathSciNetMATH Guin, L.N., Acharya, S.: Dynamic behaviour of a reaction–diffusion predator–prey model with both refuge and harvesting. Nonlinear Dyn. 88(2), 1501–1533 (2017)MathSciNetMATH
40.
Zurück zum Zitat Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator–prey model with herd behaviour. Chaos Interdiscip. J. Nonlinear Sci. 23, 033102 (2013)MATH Yuan, S., Xu, C., Zhang, T.: Spatial dynamics in a predator–prey model with herd behaviour. Chaos Interdiscip. J. Nonlinear Sci. 23, 033102 (2013)MATH
41.
Zurück zum Zitat Ghorai, S., Poria, S.: Emergent impacts of quadratic mortality on pattern formation in a predator–prey system. Nonlinear Dyn. 87(4), 2715–2734 (2017)MathSciNetMATH Ghorai, S., Poria, S.: Emergent impacts of quadratic mortality on pattern formation in a predator–prey system. Nonlinear Dyn. 87(4), 2715–2734 (2017)MathSciNetMATH
42.
Zurück zum Zitat Xu, Z., Song, Y.: Bifurcation analysis of a diffusive predator–prey system with a herd behavior and quadratic mortality. Math. Methods Appl. Sci. 38(14), 2994–3006 (2015)MathSciNetMATH Xu, Z., Song, Y.: Bifurcation analysis of a diffusive predator–prey system with a herd behavior and quadratic mortality. Math. Methods Appl. Sci. 38(14), 2994–3006 (2015)MathSciNetMATH
43.
Zurück zum Zitat Brentnall, S., Richards, K., Brindley, J., Murphy, E.: Plankton patchiness and its effect on larger-scale productivity. J. Plankton Res. 25, 121–140 (2003) Brentnall, S., Richards, K., Brindley, J., Murphy, E.: Plankton patchiness and its effect on larger-scale productivity. J. Plankton Res. 25, 121–140 (2003)
44.
Zurück zum Zitat Yang, R., Zhang, C.: The effect of prey refuge and time delay on a diffusive predator–prey system with hyperbolic mortality. Complexity 21(S1), 446–459 (2016)MathSciNet Yang, R., Zhang, C.: The effect of prey refuge and time delay on a diffusive predator–prey system with hyperbolic mortality. Complexity 21(S1), 446–459 (2016)MathSciNet
45.
Zurück zum Zitat Li, Y.: Dynamics of a delayed diffusive predator–prey model with hyperbolic mortality. Nonlinear Dyn. 85(4), 2425–2436 (2016)MathSciNetMATH Li, Y.: Dynamics of a delayed diffusive predator–prey model with hyperbolic mortality. Nonlinear Dyn. 85(4), 2425–2436 (2016)MathSciNetMATH
46.
Zurück zum Zitat Tang, X., Song, Y.: Bifurcation analysis and Turing instability in a diffusive predator–prey model with herd behavior and hyperbolic mortality. Chaos Solitons Fract. 81, 303–314 (2015)MathSciNetMATH Tang, X., Song, Y.: Bifurcation analysis and Turing instability in a diffusive predator–prey model with herd behavior and hyperbolic mortality. Chaos Solitons Fract. 81, 303–314 (2015)MathSciNetMATH
47.
Zurück zum Zitat Sambath, M., Balachandran, K., Suvinthra, M.: Stability and Hopf bifurcation of a diffusive predator–prey model with hyperbolic mortality. Complexity 21(S1), 34–43 (2016)MathSciNetMATH Sambath, M., Balachandran, K., Suvinthra, M.: Stability and Hopf bifurcation of a diffusive predator–prey model with hyperbolic mortality. Complexity 21(S1), 34–43 (2016)MathSciNetMATH
48.
Zurück zum Zitat Zhang, F., Li, Y.: Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dyn. 88(2), 1397–1412 (2017)MathSciNetMATH Zhang, F., Li, Y.: Stability and Hopf bifurcation of a delayed-diffusive predator–prey model with hyperbolic mortality and nonlinear prey harvesting. Nonlinear Dyn. 88(2), 1397–1412 (2017)MathSciNetMATH
49.
Zurück zum Zitat Zhang, X., Li, Y., Jiang, D.: Dynamics of a stochastic Holling type II predator–prey model with hyperbolic mortality. Nonlinear Dyn. 87(3), 2011–2020 (2016)MATH Zhang, X., Li, Y., Jiang, D.: Dynamics of a stochastic Holling type II predator–prey model with hyperbolic mortality. Nonlinear Dyn. 87(3), 2011–2020 (2016)MATH
50.
Zurück zum Zitat Saifuddin, M., Samanta, S., Biswasa, S., Chattopadhyay, J.: An eco-epidemiological model with different competition coefficients and strong-Allee in the prey. Int. J. Bifurc. Chaos 27(8), 1730027 (2017)MathSciNetMATH Saifuddin, M., Samanta, S., Biswasa, S., Chattopadhyay, J.: An eco-epidemiological model with different competition coefficients and strong-Allee in the prey. Int. J. Bifurc. Chaos 27(8), 1730027 (2017)MathSciNetMATH
51.
Zurück zum Zitat Sasmal, S.K., Chattopadhyay, J.: An eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 246(2), 260–271 (2013)MathSciNetMATH Sasmal, S.K., Chattopadhyay, J.: An eco-epidemiological system with infected prey and predator subject to the weak Allee effect. Math. Biosci. 246(2), 260–271 (2013)MathSciNetMATH
52.
Zurück zum Zitat Greenhalgh, D., Khan, Q.J.A., Pettigrew, J.S.: An eco-epidemiological predator–prey model where predators distinguish between susceptible and infected prey. Math. Methods Appl. Sci. 40(1), 146–166 (2017)MathSciNetMATH Greenhalgh, D., Khan, Q.J.A., Pettigrew, J.S.: An eco-epidemiological predator–prey model where predators distinguish between susceptible and infected prey. Math. Methods Appl. Sci. 40(1), 146–166 (2017)MathSciNetMATH
53.
Zurück zum Zitat Wang, S., Ma, Z., Wang, W.: Dynamical behavior of a generalized eco-epidemiological system with prey refuge. Adv. Differ. Equ. 2018(1), 244 (2018)MathSciNetMATH Wang, S., Ma, Z., Wang, W.: Dynamical behavior of a generalized eco-epidemiological system with prey refuge. Adv. Differ. Equ. 2018(1), 244 (2018)MathSciNetMATH
54.
Zurück zum Zitat Hale, J.K.: Theory of Functional Differential Equations. Springer, Berlin (1977)MATH Hale, J.K.: Theory of Functional Differential Equations. Springer, Berlin (1977)MATH
55.
Zurück zum Zitat Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)MATH Birkhoff, G., Rota, G.C.: Ordinary Differential Equations. Ginn, Boston (1982)MATH
56.
Zurück zum Zitat Gard, T.C., Hallam, T.G.: Persistece in food web-1, Lotka–Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)MathSciNetMATH Gard, T.C., Hallam, T.G.: Persistece in food web-1, Lotka–Volterra food chains. Bull. Math. Biol. 41, 877–891 (1979)MathSciNetMATH
57.
Zurück zum Zitat Martin Jr., R.H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45(2), 432–454 (1974)MathSciNetMATH Martin Jr., R.H.: Logarithmic norms and projections applied to linear differential systems. J. Math. Anal. Appl. 45(2), 432–454 (1974)MathSciNetMATH
58.
Zurück zum Zitat Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)MathSciNetMATH Li, M.Y., Muldowney, J.S.: A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)MathSciNetMATH
59.
Zurück zum Zitat Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (2003)MATH Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer, Berlin (2003)MATH
60.
Zurück zum Zitat Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1976)MATH Rudin, W.: Principles of Mathematical Analysis, vol. 3. McGraw-Hill, New York (1976)MATH
61.
Zurück zum Zitat Sotomayor, J.: Generic bifurcations of dynamical systems. In: Peixoto, M.M. (ed.) Dynamical Systems, pp. 549–560. Academic Press, New York (1973) Sotomayor, J.: Generic bifurcations of dynamical systems. In: Peixoto, M.M. (ed.) Dynamical Systems, pp. 549–560. Academic Press, New York (1973)
Metadaten
Titel
Dynamics of an eco-epidemiological system with disease in competitive prey species
verfasst von
Absos Ali Shaikh
Harekrishna Das
Sahabuddin Sarwardi
Publikationsdatum
13.10.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2020
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-019-01295-6

Weitere Artikel der Ausgabe 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Zur Ausgabe