Skip to main content

2021 | OriginalPaper | Buchkapitel

10. Dynamics of Axially Functionally Graded Timoshenko Beams on Linear Elastic Foundation

verfasst von : Hareram Lohar, Anirban Mitra, Sarmila Sahoo

Erschienen in: Recent Advances in Layered Materials and Structures

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chapter presents a detailed study into dynamic behaviour of axially functionally graded (AFG) tapered Timoshenko beam on linear elastic foundation. Geometric nonlinearity is induced in the system through Von Karman strain–displacement expressions, which are inherently nonlinear. The material model is such that it exhibits continuous gradation of material properties along the length of the beam. A set of linear springs is assumed to be attached to the bottom of the beam to mathematically replicate the foundation behaviour. Governing equations of motion are derived through suitable energy principle. The free vibration study is carried out on statically deflected configuration to plot the backbone curves of the system. Forced vibration problem is solved by assuming dynamic equilibrium under maximum amplitude of excitation. Amplitude and frequency of excitation of the external transverse harmonic excitation are the controlling factors of the system response. Frequency response curves pertaining to different combinations of system parameters are furnished as benchmark results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Akgöz B, Civalek Ö (2013) Free Vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322CrossRef Akgöz B, Civalek Ö (2013) Free Vibration analysis of axially functionally graded tapered Bernoulli-Euler microbeams based on the modified couple stress theory. Compos Struct 98:314–322CrossRef
2.
Zurück zum Zitat Ansari R, Gholami R, Shojaei MF, Mohammadi V, Sahmani S (2013) Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos Struct 100:385–397CrossRef Ansari R, Gholami R, Shojaei MF, Mohammadi V, Sahmani S (2013) Size-dependent bending, buckling and free vibration of functionally graded Timoshenko microbeams based on the most general strain gradient theory. Compos Struct 100:385–397CrossRef
3.
Zurück zum Zitat Arefi M, Zenkour AM (2017a) Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation. Mech Res Commun 79:51–62CrossRef Arefi M, Zenkour AM (2017a) Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation. Mech Res Commun 79:51–62CrossRef
4.
Zurück zum Zitat Arefi M, Zenkour AM (2017b) Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation. Theoretical & Applied Mechanics Letters 7:145–151CrossRef Arefi M, Zenkour AM (2017b) Analysis of wave propagation in a functionally graded nanobeam resting on visco-Pasternak’s foundation. Theoretical & Applied Mechanics Letters 7:145–151CrossRef
5.
Zurück zum Zitat Calim FF (2016a) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B 103:98–112CrossRef Calim FF (2016a) Free and forced vibration analysis of axially functionally graded Timoshenko beams on two-parameter viscoelastic foundation. Compos B 103:98–112CrossRef
6.
Zurück zum Zitat Calim FF (2016b) Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Compos B 98:472–483CrossRef Calim FF (2016b) Transient analysis of axially functionally graded Timoshenko beams with variable cross-section. Compos B 98:472–483CrossRef
7.
Zurück zum Zitat Chen DQ, Sun DL, Li XF (2017) Surface effects on resonance frequencies of axially functionally graded Timoshenko nanocantilevers with attached nanoparticle. Compos Struct 173:116–126CrossRef Chen DQ, Sun DL, Li XF (2017) Surface effects on resonance frequencies of axially functionally graded Timoshenko nanocantilevers with attached nanoparticle. Compos Struct 173:116–126CrossRef
8.
Zurück zum Zitat Deng H, Chen KD, Cheng W, Zhao SG (2017) Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Compos Struct 160:152–168CrossRef Deng H, Chen KD, Cheng W, Zhao SG (2017) Vibration and buckling analysis of double-functionally graded Timoshenko beam system on Winkler-Pasternak elastic foundation. Compos Struct 160:152–168CrossRef
9.
Zurück zum Zitat Esfahani SE, Kiani Y, Eslami MR (2013) Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. Int J Mech Sci 69:10–20CrossRef Esfahani SE, Kiani Y, Eslami MR (2013) Non-linear thermal stability analysis of temperature dependent FGM beams supported on non-linear hardening elastic foundations. Int J Mech Sci 69:10–20CrossRef
10.
Zurück zum Zitat Ghayesh MH (2018) Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J Comput Nonlinear Dyn 13:1–10 Ghayesh MH (2018) Nonlinear vibrations of axially functionally graded Timoshenko tapered beams. J Comput Nonlinear Dyn 13:1–10
11.
Zurück zum Zitat Ghayesh MH, Farokhi H (2018) Bending and vibration analyses of coupled axially functionally graded tapered beams. Nonlinear Dyn 91:17–28 Ghayesh MH, Farokhi H (2018) Bending and vibration analyses of coupled axially functionally graded tapered beams. Nonlinear Dyn 91:17–28
12.
Zurück zum Zitat Huang Y, Luo QZ (2011) A simple method to determine the critical buckling loads for axially inhomogeneous beams with elastic restraint. Comput Math Appl 61:2510–2517CrossRef Huang Y, Luo QZ (2011) A simple method to determine the critical buckling loads for axially inhomogeneous beams with elastic restraint. Comput Math Appl 61:2510–2517CrossRef
13.
Zurück zum Zitat Huang Y, Wang T, Zhao Y, Wang P (2018) Effect of axially functionally graded material on whirling frequencies and critical speeds of a spinning Timoshenko beam. Compos Struct 192:355–367CrossRef Huang Y, Wang T, Zhao Y, Wang P (2018) Effect of axially functionally graded material on whirling frequencies and critical speeds of a spinning Timoshenko beam. Compos Struct 192:355–367CrossRef
14.
Zurück zum Zitat Huang, Y., Yang, L. E., & Luo, Q. Z. (2013). Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Composites: Part B, 45, 1493–1498. Huang, Y., Yang, L. E., & Luo, Q. Z. (2013). Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Composites: Part B, 45, 1493–1498.
15.
Zurück zum Zitat Huang Y, Zhang M, Rong H (2016) Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko Theory. Acta Mech Solida Sin 29(2):200–207CrossRef Huang Y, Zhang M, Rong H (2016) Buckling analysis of axially functionally graded and non-uniform beams based on Timoshenko Theory. Acta Mech Solida Sin 29(2):200–207CrossRef
16.
Zurück zum Zitat Ke LL, Wang YS, Yang J, Kitipornchai S (2012) Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci 50:256–267CrossRef Ke LL, Wang YS, Yang J, Kitipornchai S (2012) Nonlinear free vibration of size-dependent functionally graded microbeams. Int J Eng Sci 50:256–267CrossRef
17.
Zurück zum Zitat Ke LL, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743–752CrossRef Ke LL, Yang J, Kitipornchai S (2010) An analytical study on the nonlinear vibration of functionally graded beams. Meccanica 45:743–752CrossRef
18.
Zurück zum Zitat Khalili SMR, Jafari AA, Eftekhari SA (2010) A Mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos Struct 92:2497–2511CrossRef Khalili SMR, Jafari AA, Eftekhari SA (2010) A Mixed Ritz-DQ method for forced vibration of functionally graded beams carrying moving loads. Compos Struct 92:2497–2511CrossRef
19.
Zurück zum Zitat Komijani M, Esfahani SE, Reddy JN, Liu YP, Eslami MR (2014) Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation. Compos Struct 112:292–307CrossRef Komijani M, Esfahani SE, Reddy JN, Liu YP, Eslami MR (2014) Nonlinear thermal stability and vibration of pre/post-buckled temperature- and microstructure-dependent functionally graded beams resting on elastic foundation. Compos Struct 112:292–307CrossRef
20.
Zurück zum Zitat Kumar S, Mitra A, Roy H (2015) Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal 18:579–593CrossRef Kumar S, Mitra A, Roy H (2015) Geometrically nonlinear free vibration analysis of axially functionally graded taper beams. Engineering Science and Technology, an International Journal 18:579–593CrossRef
21.
Zurück zum Zitat Lezgy-Nazargah M (2015) Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerosp Sci Technol 45:154–164CrossRef Lezgy-Nazargah M (2015) Fully coupled thermo-mechanical analysis of bi-directional FGM beams using NURBS isogeometric finite element approach. Aerosp Sci Technol 45:154–164CrossRef
22.
Zurück zum Zitat Li XF, Kang YA, Wu JX (2013) Exact frequency equations of free vibration of exponentially functionally graded beams. Appl Acoust 74:413–420CrossRef Li XF, Kang YA, Wu JX (2013) Exact frequency equations of free vibration of exponentially functionally graded beams. Appl Acoust 74:413–420CrossRef
23.
Zurück zum Zitat Lohar H, Mitra A, Sahoo S (2016a) Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation. Curved and Layered Structures 3(1):223–239CrossRef Lohar H, Mitra A, Sahoo S (2016a) Geometric nonlinear free vibration of axially functionally graded non-uniform beams supported on elastic foundation. Curved and Layered Structures 3(1):223–239CrossRef
24.
Zurück zum Zitat Lohar H, Mitra A, Sahoo S (2016b) Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation. International Frontier Science Letters 9:9–25CrossRef Lohar H, Mitra A, Sahoo S (2016b) Natural frequency and mode shapes of exponential tapered AFG beams on elastic foundation. International Frontier Science Letters 9:9–25CrossRef
25.
Zurück zum Zitat Lohar H, Mitra A, Sahoo S (2018a) Free vibration of initially deflected axially functionally graded non-uniform Timoshenko beams on elastic foundation. Romanian Journal of Acoustics and Vibration 15(2):75–89 Lohar H, Mitra A, Sahoo S (2018a) Free vibration of initially deflected axially functionally graded non-uniform Timoshenko beams on elastic foundation. Romanian Journal of Acoustics and Vibration 15(2):75–89
26.
Zurück zum Zitat Lohar H, Mitra A, Sahoo S (2018b) Geometrically non-linear frequency response of axially functionally graded beams resting on elastic foundation under harmonic excitation. International Journal of Manufacturing, Materials, and Mechanical Engineering 8(3):23–43CrossRef Lohar H, Mitra A, Sahoo S (2018b) Geometrically non-linear frequency response of axially functionally graded beams resting on elastic foundation under harmonic excitation. International Journal of Manufacturing, Materials, and Mechanical Engineering 8(3):23–43CrossRef
27.
Zurück zum Zitat Lohar H, Mitra A, Sahoo S (2019) Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures 6:90–104CrossRef Lohar H, Mitra A, Sahoo S (2019) Nonlinear response of axially functionally graded Timoshenko beams on elastic foundation under harmonic excitation. Curved and Layered Structures 6:90–104CrossRef
28.
Zurück zum Zitat Mohanty SC, Dash RR, Rout T (2011) Parametric instability of a functionally graded Timoshenko beam on Winkler’s elastic foundation. Nucl Eng Des 241:2698–2715CrossRef Mohanty SC, Dash RR, Rout T (2011) Parametric instability of a functionally graded Timoshenko beam on Winkler’s elastic foundation. Nucl Eng Des 241:2698–2715CrossRef
29.
Zurück zum Zitat Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48:1444–1450CrossRef Nakamura T, Wang T, Sampath S (2000) Determination of properties of graded materials by inverse analysis and instrumented indentation. Acta Mater 48:1444–1450CrossRef
30.
Zurück zum Zitat Nguyen DK, Nguyen QH, Tran TT, Bui VT (2017) Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech 228:141–155CrossRef Nguyen DK, Nguyen QH, Tran TT, Bui VT (2017) Vibration of bi-dimensional functionally graded Timoshenko beams excited by a moving load. Acta Mech 228:141–155CrossRef
31.
Zurück zum Zitat Paul A, Das D (2016) Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method. Engineering Science and Technology, an International Journal 19:1003–1017CrossRef Paul A, Das D (2016) Free vibration analysis of pre-stressed FGM Timoshenko beams under large transverse deflection by a variational method. Engineering Science and Technology, an International Journal 19:1003–1017CrossRef
32.
Zurück zum Zitat Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2005) Numerical recipes in Fortran 77 (2nd ed.) Cambridge USA: Press Syndicate Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2005) Numerical recipes in Fortran 77 (2nd ed.) Cambridge USA: Press Syndicate
33.
Zurück zum Zitat Pydah A, Sabale A (2017) Static analysis of bi-directional functionally graded curved beams. Compos Struct 160:867–876CrossRef Pydah A, Sabale A (2017) Static analysis of bi-directional functionally graded curved beams. Compos Struct 160:867–876CrossRef
34.
Zurück zum Zitat Rajasekaran S (2013) Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl Math Model 37:4440–4463CrossRef Rajasekaran S (2013) Free vibration of centrifugally stiffened axially functionally graded tapered Timoshenko beams using differential transformation and quadrature methods. Appl Math Model 37:4440–4463CrossRef
35.
Zurück zum Zitat Rajasekaran, S., & Khaniki, H. B. (2018). Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory. Mechanics of Advanced Materials and Structures, 0, 1–15. Rajasekaran, S., & Khaniki, H. B. (2018). Finite element static and dynamic analysis of axially functionally graded nonuniform small-scale beams based on nonlocal strain gradient theory. Mechanics of Advanced Materials and Structures, 0, 1–15.
36.
Zurück zum Zitat Sarkar, K., & Ganguli, R. (2014). Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites: Part B, 58, 361–370. Sarkar, K., & Ganguli, R. (2014). Closed-form solutions for axially functionally graded Timoshenko beams having uniform cross-section and fixed–fixed boundary condition. Composites: Part B, 58, 361–370.
37.
Zurück zum Zitat Shafiei N, Kazemi M, Ghadiri M (2016) Comparison of modelling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams. Physica E 83:74–87CrossRef Shafiei N, Kazemi M, Ghadiri M (2016) Comparison of modelling of the rotating tapered axially functionally graded Timoshenko and Euler-Bernoulli microbeams. Physica E 83:74–87CrossRef
38.
Zurück zum Zitat Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl Math Model 36:3094–3111CrossRef Shahba A, Rajasekaran S (2012) Free vibration and stability of tapered Euler-Bernoulli beams made of axially functionally graded materials. Appl Math Model 36:3094–3111CrossRef
39.
Zurück zum Zitat Shahba A, Attarnejad R, Hajilar S (2011) Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams. Shock and Vibration 18:683–696CrossRef Shahba A, Attarnejad R, Hajilar S (2011) Free vibration and stability of axially functionally graded tapered Euler-Bernoulli beams. Shock and Vibration 18:683–696CrossRef
40.
Zurück zum Zitat Shahba A, Attarnejad R, Marvi MT, Hajilar S (2011) Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Composites: Part B 42:801–808 Shahba A, Attarnejad R, Marvi MT, Hajilar S (2011) Free vibration and stability analysis of axially functionally graded tapered Timoshenko beams with classical and non-classical boundary conditions. Composites: Part B 42:801–808
41.
Zurück zum Zitat Simsek M (2010) Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos Struct 92:904–917CrossRef Simsek M (2010) Vibration analysis of a functionally graded beam under a moving mass by using different beam theories. Compos Struct 92:904–917CrossRef
42.
Zurück zum Zitat Simsek M (2016) Buckling of Timoshenko Beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions. Compos Struct 149:304–314CrossRef Simsek M (2016) Buckling of Timoshenko Beams composed of two-dimensional functionally graded material (2D-FGM) having different boundary conditions. Compos Struct 149:304–314CrossRef
43.
Zurück zum Zitat Sınıra S, Çevik M, Sınır BG (2018) Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section. Compos B 148:123–131CrossRef Sınıra S, Çevik M, Sınır BG (2018) Nonlinear free and forced vibration analyses of axially functionally graded Euler-Bernoulli beams with non-uniform cross-section. Compos B 148:123–131CrossRef
44.
Zurück zum Zitat Tossapanon P, Wattanasakulpong N (2016) Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation. Compos Struct 142:215–225CrossRef Tossapanon P, Wattanasakulpong N (2016) Stability and free vibration of functionally graded sandwich beams resting on two-parameter elastic foundation. Compos Struct 142:215–225CrossRef
45.
Zurück zum Zitat Yan T, Kitipornchai S, Yang J, He XQ (2011) Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Compos Struct 93:2992–3001CrossRef Yan T, Kitipornchai S, Yang J, He XQ (2011) Dynamic behaviour of edge-cracked shear deformable functionally graded beams on an elastic foundation under a moving load. Compos Struct 93:2992–3001CrossRef
46.
Zurück zum Zitat Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128CrossRef Yas MH, Samadi N (2012) Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int J Press Vessels Pip 98:119–128CrossRef
47.
Zurück zum Zitat Zeighampour H, Beni YT (2015) Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl Math Model 39:5354–5369CrossRef Zeighampour H, Beni YT (2015) Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory. Appl Math Model 39:5354–5369CrossRef
48.
Zurück zum Zitat Zhao L, Zhu J, Wen XD (2016) Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach. Structural Engineering and Mechanics 59(1):101–122CrossRef Zhao L, Zhu J, Wen XD (2016) Exact analysis of bi-directional functionally graded beams with arbitrary boundary conditions via the symplectic approach. Structural Engineering and Mechanics 59(1):101–122CrossRef
Metadaten
Titel
Dynamics of Axially Functionally Graded Timoshenko Beams on Linear Elastic Foundation
verfasst von
Hareram Lohar
Anirban Mitra
Sarmila Sahoo
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-33-4550-8_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.