Skip to main content
Erschienen in: Physics of Metals and Metallography 7/2022

01.07.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Dynamics of Domain Walls in the Region of Compensated Angular Momentum in Ferrimagnetic Films with Plane Anisotropy

verfasst von: A. K. Zvezdin, Z. V. Gareeva, A. M. Trochina, K. A. Zvezdin

Erschienen in: Physics of Metals and Metallography | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Specific features of the dynamics of magnetic domain walls of a two-sublattice ferrimagnet with two compensation points: angular momentum compensation temperature ТА and the magnetization compensation temperature ТМ, are studied. Based on the effective Lagrangian method, Slonczewski-type equations of the dynamics of domain walls in the region of ТА are obtained. The stationary and nonstationary dynamics of domain walls in ferrimagnets are calculated in the presence of combined “easy-axis” and “easy-plane” anisotropy. It is shown that the “easy-plane” magnetic anisotropy field leads to a shift in the Walker field and a change in the characteristics of the unsteady motion of domain walls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. K. Kim, “Fast and efficient switching with ferrimagnets,” Nat. Electron. 3, No. 1, 18–19 (2020).CrossRef S. K. Kim, “Fast and efficient switching with ferrimagnets,” Nat. Electron. 3, No. 1, 18–19 (2020).CrossRef
2.
Zurück zum Zitat S. Ghosh, T. Komori, A. Hallal, GarciaJ. Pena, T. Gushi, T. Hirose, H. Mitarai, H. Okuno, J. Voge, M. Chshiev, J. Attane, L. Vila, T. Suemasu, and S. Pizzini, “Current-driven domain wall dynamics in ferrimagnetic nickel-doped Mn4N films: Very large domain wall velocities and reversal of motion direction across the magnetic compensation point,” Nano Lett. 21, 2580–2587 (2021).CrossRef S. Ghosh, T. Komori, A. Hallal, GarciaJ. Pena, T. Gushi, T. Hirose, H. Mitarai, H. Okuno, J. Voge, M. Chshiev, J. Attane, L. Vila, T. Suemasu, and S. Pizzini, “Current-driven domain wall dynamics in ferrimagnetic nickel-doped Mn4N films: Very large domain wall velocities and reversal of motion direction across the magnetic compensation point,” Nano Lett. 21, 2580–2587 (2021).CrossRef
3.
Zurück zum Zitat C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, No. 22, 220402 (2006).CrossRef C. D. Stanciu, A. V. Kimel, F. Hansteen, A. Tsukamoto, A. Itoh, A. Kirilyuk, and T. Rasing, “Ultrafast spin dynamics across compensation points in ferrimagnetic GdFeCo: The role of angular momentum compensation,” Phys. Rev. B 73, No. 22, 220402 (2006).CrossRef
4.
Zurück zum Zitat K. Cai, Z. Zhu, J. M. Lee, R. Mishra, L. Ren, S. D. Pollard, P. He, G. Liang, K. L. Teo, and H. Yang, “Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets,” Nat. Electron. 3, 37–42 (2020).CrossRef K. Cai, Z. Zhu, J. M. Lee, R. Mishra, L. Ren, S. D. Pollard, P. He, G. Liang, K. L. Teo, and H. Yang, “Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets,” Nat. Electron. 3, 37–42 (2020).CrossRef
5.
Zurück zum Zitat E. G. Galkina, K. E. Zaspel, B. A. Ivanov, N. E. Kulagin, and L. M. Lerman, “Limiting velocity and dispersion law of domain walls in ferrimagnets close to the spin compensation point,” JETP Lett. 110, 481–486 (2019).CrossRef E. G. Galkina, K. E. Zaspel, B. A. Ivanov, N. E. Kulagin, and L. M. Lerman, “Limiting velocity and dispersion law of domain walls in ferrimagnets close to the spin compensation point,” JETP Lett. 110, 481–486 (2019).CrossRef
6.
Zurück zum Zitat K. J. Kim, S. K. Kim, Y. Hirata, S. H. Oh, T. Tono, D. H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K. L. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017).CrossRef K. J. Kim, S. K. Kim, Y. Hirata, S. H. Oh, T. Tono, D. H. Kim, T. Okuno, W. S. Ham, S. Kim, G. Go, Y. Tserkovnyak, A. Tsukamoto, T. Moriyama, K. L. Lee, and T. Ono, “Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets,” Nat. Mater. 16, No. 12, 1187–1192 (2017).CrossRef
7.
Zurück zum Zitat E. Haltz, J. Sampaio, S. Krishnia, L. Berges, R. Weil, and R. Mougin, “Measurement of the tilt of a moving domain wall shows precession-free dynamics in compensated ferrimagnets,” Sci. Rep. 10, No. 1, 1–7 (2020).CrossRef E. Haltz, J. Sampaio, S. Krishnia, L. Berges, R. Weil, and R. Mougin, “Measurement of the tilt of a moving domain wall shows precession-free dynamics in compensated ferrimagnets,” Sci. Rep. 10, No. 1, 1–7 (2020).CrossRef
8.
Zurück zum Zitat V. V. Randoshkin, V. A. Polezhaev, N. N. Sysoev, and Yu. N. Sazhin, “Dynamics of domain walls in bismuth-ytterbium-containing garnet ferrite films in the vicinity of the angular momentum compensation point,” Phys. Solid State 45, No. 3, 513–518 (2003).CrossRef V. V. Randoshkin, V. A. Polezhaev, N. N. Sysoev, and Yu. N. Sazhin, “Dynamics of domain walls in bismuth-ytterbium-containing garnet ferrite films in the vicinity of the angular momentum compensation point,” Phys. Solid State 45, No. 3, 513–518 (2003).CrossRef
9.
Zurück zum Zitat V. V. Randoshkin and V. B. Sigachev, “Dynamics of domain walls in thulium-containing films of ferrite garnets near the angular angular compensation point,” Fiz. Tverd. Tela 32, No. 1, 246–253 (1990). V. V. Randoshkin and V. B. Sigachev, “Dynamics of domain walls in thulium-containing films of ferrite garnets near the angular angular compensation point,” Fiz. Tverd. Tela 32, No. 1, 246–253 (1990).
10.
Zurück zum Zitat M. V. Logunov, S. S. Safonov, A. S. Fedorov, A. A. Danilova, N. V. Moiseev, A. R. Safin, S. A. Nikitov, and A. Kirilyuk, “Domain Wall Motion Across Magnetic and Spin Compensation Points in Magnetic Garnets,” Phys. Rev. Appl. 15, No. 6, 064024 (2021).CrossRef M. V. Logunov, S. S. Safonov, A. S. Fedorov, A. A. Danilova, N. V. Moiseev, A. R. Safin, S. A. Nikitov, and A. Kirilyuk, “Domain Wall Motion Across Magnetic and Spin Compensation Points in Magnetic Garnets,” Phys. Rev. Appl. 15, No. 6, 064024 (2021).CrossRef
11.
Zurück zum Zitat L. Caretta, S. H. Oh, T. Fakhrul, D. K. Lee, B. H. Lee, S. K. Kim, C. A. Ross, K. J. Lee, and G. S. D. Beach, “Relativistic kinematics of a magnetic soliton,” Science 370, No. 6523, 1438–1442 (2020).CrossRef L. Caretta, S. H. Oh, T. Fakhrul, D. K. Lee, B. H. Lee, S. K. Kim, C. A. Ross, K. J. Lee, and G. S. D. Beach, “Relativistic kinematics of a magnetic soliton,” Science 370, No. 6523, 1438–1442 (2020).CrossRef
12.
Zurück zum Zitat P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills, R. P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freumuth, Y. Mokrousov, J. Kunes, J. S. Chauhan, M. L. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, “Electrical switching of an antiferromagnet,” Science 351, No. 6273, 587–590 (2016).CrossRef P. Wadley, B. Howells, J. Zelezny, C. Andrews, V. Hills, R. P. Campion, V. Novak, K. Olejnik, F. Maccherozzi, S. S. Dhesi, S. Y. Martin, T. Wagner, J. Wunderlich, F. Freumuth, Y. Mokrousov, J. Kunes, J. S. Chauhan, M. L. Grzybowski, A. W. Rushforth, K. W. Edmonds, B. L. Gallagher, and T. Jungwirth, “Electrical switching of an antiferromagnet,” Science 351, No. 6273, 587–590 (2016).CrossRef
13.
Zurück zum Zitat S. A. Siddiqui, J. Han, J. T. Finley, C. A. Ross, and L. Liu, “Current-induced domain wall motion in a compensated ferrimagnet,” Phys. Rev. Lett. 121, No. 5, 057701 (2018).CrossRef S. A. Siddiqui, J. Han, J. T. Finley, C. A. Ross, and L. Liu, “Current-induced domain wall motion in a compensated ferrimagnet,” Phys. Rev. Lett. 121, No. 5, 057701 (2018).CrossRef
14.
Zurück zum Zitat Z. Kaspar, M. Surynek, J. Zubac, F. Krizek, V. Novak, R. P. Campion, M. S. Wornle, P. Gambardella, X. Marti, P. Nemec, K. W. Edmonds, S. Reimers, O. J. Amin, F. Maccherozzi, S. S. Dhesi, P. Wadley, J. Wunderlich, K. Olejnik, and T. Jungwirth, “Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses,” Nat. Electron. 4, No. 1, 30–37 (2021).CrossRef Z. Kaspar, M. Surynek, J. Zubac, F. Krizek, V. Novak, R. P. Campion, M. S. Wornle, P. Gambardella, X. Marti, P. Nemec, K. W. Edmonds, S. Reimers, O. J. Amin, F. Maccherozzi, S. S. Dhesi, P. Wadley, J. Wunderlich, K. Olejnik, and T. Jungwirth, “Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses,” Nat. Electron. 4, No. 1, 30–37 (2021).CrossRef
15.
Zurück zum Zitat J. Y. Lee, H. Lee, J. S. Yang, K. C. Kim, S. S. Kim, H. M. Woo, J. W. Kim, M. S. Park, K. M. Yu, S. M. Kim, E. H. Kim, S. J. Park, S. T. Jeong, C. H. Yu, Y. Song, S. H. Gu, H. Oh, B. S. Koo, J. J. Hong, C. M. Ryu, W. B. Park, M. Oh, Y. K. Choi, and S. Y. Lee, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 1–10 (2021).CrossRef J. Y. Lee, H. Lee, J. S. Yang, K. C. Kim, S. S. Kim, H. M. Woo, J. W. Kim, M. S. Park, K. M. Yu, S. M. Kim, E. H. Kim, S. J. Park, S. T. Jeong, C. H. Yu, Y. Song, S. H. Gu, H. Oh, B. S. Koo, J. J. Hong, C. M. Ryu, W. B. Park, M. Oh, Y. K. Choi, and S. Y. Lee, “Ruderman–Kittel–Kasuya–Yosida-type interfacial Dzyaloshinskii–Moriya interaction in heavy metal/ferromagnet heterostructures,” Nat. Commun. 12, No. 1, 1–10 (2021).CrossRef
16.
Zurück zum Zitat S. Joo, R. S. Alemayehu, J. G. Choi, B. G. Park, and G. M. Choi, “Magnetic anisotropy and damping constant of ferrimagnetic GdCo alloy near compensation point,” Materials 14, No. 10, 2604 (2021).CrossRef S. Joo, R. S. Alemayehu, J. G. Choi, B. G. Park, and G. M. Choi, “Magnetic anisotropy and damping constant of ferrimagnetic GdCo alloy near compensation point,” Materials 14, No. 10, 2604 (2021).CrossRef
17.
Zurück zum Zitat W. H. Li, Z. Jin, D. L. Wen, X. M. Zhang, M. H. Qin, and J. M. Liu, “Ultrafast domain wall motion in ferrimagnets induced by magnetic anisotropy gradient,” Phys. Rev. B 101, No. 2, 024414 (2020).CrossRef W. H. Li, Z. Jin, D. L. Wen, X. M. Zhang, M. H. Qin, and J. M. Liu, “Ultrafast domain wall motion in ferrimagnets induced by magnetic anisotropy gradient,” Phys. Rev. B 101, No. 2, 024414 (2020).CrossRef
18.
Zurück zum Zitat V. V. Yurlov, K. A. Zvezdin, P. N. Skirdkov, and A. K. Zvezdin, “Domain wall dynamics of ferrimagnets influenced by spin current near the angular momentum compensation temperature,” Phys. Rev. B 103, No. 13, 134442 (2021).CrossRef V. V. Yurlov, K. A. Zvezdin, P. N. Skirdkov, and A. K. Zvezdin, “Domain wall dynamics of ferrimagnets influenced by spin current near the angular momentum compensation temperature,” Phys. Rev. B 103, No. 13, 134442 (2021).CrossRef
19.
Zurück zum Zitat E. Martinez, V. Raposo, and O. Alejos, “Novel interpretation of recent experiments on the dynamics of domain walls along ferrimagnetic strips,” J. Phys.: Condens. Matter 32, No. 46, 465803 (2020). E. Martinez, V. Raposo, and O. Alejos, “Novel interpretation of recent experiments on the dynamics of domain walls along ferrimagnetic strips,” J. Phys.: Condens. Matter 32, No. 46, 465803 (2020).
20.
Zurück zum Zitat J. Barker and U. Atxitia, “A review of modelling in ferrimagnetic spintronics,” J. Phys. Soc. Jpn. 90, No. 8, 081001 (2021).CrossRef J. Barker and U. Atxitia, “A review of modelling in ferrimagnetic spintronics,” J. Phys. Soc. Jpn. 90, No. 8, 081001 (2021).CrossRef
21.
Zurück zum Zitat A. K. Zvezdin, “On the dynamics of domain walls in weak ferromagnets,” Pis’ma Zh. Eksp. Teor. Fiz. 29, No. 10, 605–610 (1979). A. K. Zvezdin, “On the dynamics of domain walls in weak ferromagnets,” Pis’ma Zh. Eksp. Teor. Fiz. 29, No. 10, 605–610 (1979).
22.
Zurück zum Zitat M. D. Davydova, K. A. Zvezdin, A. V. Kimel, and A. K. Zvezdin, “Ultrafast spin dynamics in ferrimagnets with compensation point,” J. Phys.: Condens. Matter 32, No. 1, 01LT01 (2019). M. D. Davydova, K. A. Zvezdin, A. V. Kimel, and A. K. Zvezdin, “Ultrafast spin dynamics in ferrimagnets with compensation point,” J. Phys.: Condens. Matter 32, No. 1, 01LT01 (2019).
23.
Zurück zum Zitat A. K. Zvezdin, Z. V. Gareeva, and K. A. Zvezdin, “Anomalies in the dynamics of ferrimagnets near the angular momentum compensation point,” J. Magn. Magn. Mater. 509, 166876 (2020).CrossRef A. K. Zvezdin, Z. V. Gareeva, and K. A. Zvezdin, “Anomalies in the dynamics of ferrimagnets near the angular momentum compensation point,” J. Magn. Magn. Mater. 509, 166876 (2020).CrossRef
24.
Zurück zum Zitat R. K. Wangsness, “Sublattice effects in magnetic resonance,” Phys. Rev. 91, No. 5, 1085 (1953).CrossRef R. K. Wangsness, “Sublattice effects in magnetic resonance,” Phys. Rev. 91, No. 5, 1085 (1953).CrossRef
25.
Zurück zum Zitat A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research (Academic Press, 2016), Vol. 1. A. P. Malozemoff and J. C. Slonczewski, Magnetic Domain Walls in Bubble Materials: Advances in Materials and Device Research (Academic Press, 2016), Vol. 1.
Metadaten
Titel
Dynamics of Domain Walls in the Region of Compensated Angular Momentum in Ferrimagnetic Films with Plane Anisotropy
verfasst von
A. K. Zvezdin
Z. V. Gareeva
A. M. Trochina
K. A. Zvezdin
Publikationsdatum
01.07.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 7/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22070225

Weitere Artikel der Ausgabe 7/2022

Physics of Metals and Metallography 7/2022 Zur Ausgabe

ELECTRICAL AND MAGNETIC PROPERTIES

Electronic Phase Separation in Magnetic Materials