Skip to main content

2020 | OriginalPaper | Buchkapitel

EasierPath: An Open-Source Tool for Human-in-the-Loop Deep Learning of Renal Pathology

verfasst von : Zheyu Zhu, Yuzhe Lu, Ruining Deng, Haichun Yang, Agnes B. Fogo, Yuankai Huo

Erschienen in: Interpretable and Annotation-Efficient Learning for Medical Image Computing

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considerable morphological phenotyping studies in nephrology have emerged in the past few years, aiming to discover hidden regularities between clinical and imaging phenotypes. Such studies have been largely enabled by deep learning based image analysis to extract sparsely located targeting objects (e.g., glomeruli) on high-resolution whole slide images (WSI). However, such methods need to be trained using labor-intensive high-quality annotations, ideally labeled by pathologists. Inspired by the recent “human-in-the-loop” strategy, we developed EasierPath, an open-source tool to integrate human physicians and deep learning algorithms for efficient large-scale pathological image quantification as a loop. Using EasierPath, physicians are able to (1) optimize the recall and precision of deep learning object detection outcomes adaptively, (2) seamlessly support deep learning outcomes refining using either our EasierPath or prevalent ImageScope software without changing physician’s user habit, and (3) manage and phenotype each object with user-defined classes. As a user case of EasierPath, we present the procedure of curating large-scale glomeruli in an efficient human-in-the-loop fashion (with two loops). From the experiments, the EasierPath saved 57% of the annotation efforts to curate 8,833 glomeruli during the second loop. Meanwhile, the average precision of glomerular detection was leveraged from 0.504 to 0.620. The EasierPath software has been released as open-source to enable the large-scale glomerular prototyping. The code can be found in https://​github.​com/​yuankaihuo/​EasierPath.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting sparse objects in gigapixel whole slide images. Comput. Med. Imaging Graph. 71, 40–48 (2019)CrossRef Gadermayr, M., Dombrowski, A.K., Klinkhammer, B.M., Boor, P., Merhof, D.: CNN cascades for segmenting sparse objects in gigapixel whole slide images. Comput. Med. Imaging Graph. 71, 40–48 (2019)CrossRef
2.
Zurück zum Zitat Gadermayr, M., Klinkhammer, B.M., Boor, P., Merhof, D.: Do we need large annotated training data for detection applications in biomedical imaging? A case study in renal glomeruli detection. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 18–26. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47157-0_3CrossRef Gadermayr, M., Klinkhammer, B.M., Boor, P., Merhof, D.: Do we need large annotated training data for detection applications in biomedical imaging? A case study in renal glomeruli detection. In: Wang, L., Adeli, E., Wang, Q., Shi, Y., Suk, H.-I. (eds.) MLMI 2016. LNCS, vol. 10019, pp. 18–26. Springer, Cham (2016). https://​doi.​org/​10.​1007/​978-3-319-47157-0_​3CrossRef
3.
Zurück zum Zitat Ginley, B., Tomaszewski, J.E., Yacoub, R., Chen, F., Sarder, P.: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology. J. Med. Imaging 4(2), 021102 (2017)CrossRef Ginley, B., Tomaszewski, J.E., Yacoub, R., Chen, F., Sarder, P.: Unsupervised labeling of glomerular boundaries using Gabor filters and statistical testing in renal histology. J. Med. Imaging 4(2), 021102 (2017)CrossRef
4.
Zurück zum Zitat Ginley, B.G., Tomaszewski, J.E., Jen, K.Y., Fogo, A., Jain, S., Sarder, P.: Computational analysis of the structural progression of human glomeruli in diabetic nephropathy. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810A. International Society for Optics and Photonics (2018) Ginley, B.G., Tomaszewski, J.E., Jen, K.Y., Fogo, A., Jain, S., Sarder, P.: Computational analysis of the structural progression of human glomeruli in diabetic nephropathy. In: Medical Imaging 2018: Digital Pathology, vol. 10581, p. 105810A. International Society for Optics and Photonics (2018)
5.
Zurück zum Zitat Grimm, P.C., et al.: Computerized image analysis of Sirius red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J. Am. Soc. Nephrol. 14(6), 1662–1668 (2003)CrossRef Grimm, P.C., et al.: Computerized image analysis of Sirius red-stained renal allograft biopsies as a surrogate marker to predict long-term allograft function. J. Am. Soc. Nephrol. 14(6), 1662–1668 (2003)CrossRef
6.
Zurück zum Zitat Hermsen, M.: Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30(10), 1968–1979 (2019)CrossRef Hermsen, M.: Deep learning-based histopathologic assessment of kidney tissue. J. Am. Soc. Nephrol. 30(10), 1968–1979 (2019)CrossRef
7.
Zurück zum Zitat Kato, T., et al.: Segmental hog: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 16(1), 316 (2015)CrossRef Kato, T., et al.: Segmental hog: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinform. 16(1), 316 (2015)CrossRef
8.
Zurück zum Zitat Klapczynski, M., Gagne, G.D., Morgan, S.J., Larson, K.J., LeRoy, B.E., Blomme, E.A., et al.: Computer-assisted imaging algorithms facilitate histomorphometric quantification of kidney damage in rodent renal failure models. J. Pathol. Inform. 3, 20 (2012) CrossRef Klapczynski, M., Gagne, G.D., Morgan, S.J., Larson, K.J., LeRoy, B.E., Blomme, E.A., et al.: Computer-assisted imaging algorithms facilitate histomorphometric quantification of kidney damage in rodent renal failure models. J. Pathol. Inform. 3, 20 (2012) CrossRef
9.
Zurück zum Zitat Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)CrossRef
10.
Zurück zum Zitat Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)CrossRef Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016)CrossRef
11.
Zurück zum Zitat Lutnick, B., et al.: An integrated iterative annotation technique for easing neural network training in medical image analysis. Nature Mach. Intell. 1(2), 112–119 (2019)CrossRef Lutnick, B., et al.: An integrated iterative annotation technique for easing neural network training in medical image analysis. Nature Mach. Intell. 1(2), 112–119 (2019)CrossRef
12.
Zurück zum Zitat Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara, R., Dickson, D.W.: Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10(9), 785–796 (2011)CrossRef Murray, M.E., Graff-Radford, N.R., Ross, O.A., Petersen, R.C., Duara, R., Dickson, D.W.: Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 10(9), 785–796 (2011)CrossRef
13.
Zurück zum Zitat Ozenne, B., Subtil, F., Maucort-Boulch, D.: The precision-recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J. Clin. Epidemiol. 68(8), 855–859 (2015)CrossRef Ozenne, B., Subtil, F., Maucort-Boulch, D.: The precision-recall curve overcame the optimism of the receiver operating characteristic curve in rare diseases. J. Clin. Epidemiol. 68(8), 855–859 (2015)CrossRef
14.
Zurück zum Zitat Servais, A., et al.: Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am. J. Transplant. 11(7), 1456–1463 (2011)CrossRef Servais, A., et al.: Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. Am. J. Transplant. 11(7), 1456–1463 (2011)CrossRef
16.
Metadaten
Titel
EasierPath: An Open-Source Tool for Human-in-the-Loop Deep Learning of Renal Pathology
verfasst von
Zheyu Zhu
Yuzhe Lu
Ruining Deng
Haichun Yang
Agnes B. Fogo
Yuankai Huo
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-61166-8_23