Skip to main content
Erschienen in: Wireless Networks 3/2020

22.11.2018

Eavesdropping-decoding compromise in spectrum sharing paradigm with ES-capable AF relay

verfasst von: Khuong Ho-Van, Thiem Do-Dac

Erschienen in: Wireless Networks | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, an unlicensed relay is deployed to maintain wireless connection between an unlicensed source and an unlicensed destination in spectrum sharing paradigm when source-destination direct channel is unavailable. The relay is capable of energy scavenging (ES) from source signal and uses the scavenged energy to amplify-and-forward it to the destination. The relay’s information transmission is eavesdropped by a wire-tapper. For prompt system performance evaluation, the current paper suggests two closed-form formulas of eavesdropping outage probability at the wire-tapper and decoding outage probability at the destination under interference power limitation and peak transmit power limitation, from which eavesdropping-decoding compromise in the spectrum sharing paradigm with the ES-capable relay is recognized. Numerous results validate the analysis and expose that relay location, times of signal relaying and energy scavenging, received power distribution for signal processing and energy scavenging can be optimized to achieve the best eavesdropping-decoding compromise.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It is recalled that the DOP and the EOP are correspondingly probabilities which channel capacities of the destination and the wire-tapper are less than a target capacity. According to information theory, they are respectively probabilities which the destination and the wire-tapper fail to restore the legitimate information. Consequently, they are pivotal metrics for measuring reliability and security. The smaller the DOP, the more accurate the information decoding at the destination. Meantime, the smaller the EOP, the more eavesdropped the source’s communication. Therefore, the correlation between the DOP and the EOP, which can be quantitatively measured as their ratio (or difference), is a good exposure for an eavesdropping-decoding compromise. In other words, this correlation is physically equivalent to the correlation between the signal and the noise in information transmission and hence, it implicitly reflects information securing capability.
 
2
A widely accepted assumption in previous researches on the spectrum sharing paradigm (e.g., [2, 23, 24] and references therein), is that interferences from licensed transmitters to unlicensed receivers are neglected. This assumption comes from the reasonings that licensed transmitters are distant from unlicensed receivers or such interferences are Gaussian-distributed. The current paper borrows this assumption and thus, no interferences from licensed transmitters to unlicensed receivers are considered.
 
3
A zero-mean \(\zeta \)-variance circular symmetric complex Gaussian random variable \(\varrho \) is mathematically denoted as \(\varrho \sim \mathcal {CN}(0,\zeta )\).
 
4
Thanks to the widely accepted assumption in previous researches on energy scavenging (e.g., [13, 14, 1619, 21] and references therein), this paper ignores the power consumption of the signal processor.
 
5
Simulated results are generated by the Monte-Carlo simulation/method which is well-known in research community on performance analysis, e.g., [30]. Due to the popularity of the Monte-Carlo simulation, a description of how it is conducted should be ignored for compactness and consistency. To obtain simulated results, \(10^7\) channel realizations have been used.
 
Literatur
1.
Zurück zum Zitat Zhou, F., Li, Z., Cheng, J., Li, Q., & Si, J. (2017). Robust AN-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT. IEEE Transactions on Communications, 16(4), 2450–2464. Zhou, F., Li, Z., Cheng, J., Li, Q., & Si, J. (2017). Robust AN-aided beamforming and power splitting design for secure MISO cognitive radio with SWIPT. IEEE Transactions on Communications, 16(4), 2450–2464.
2.
Zurück zum Zitat Ho-Van, K. (2017). On the outage performance of reactive relay selection in cooperative cognitive networks over Nakagami-\(m\) fading channels. Wireless Personal Communications, 96(1), 1007–1027.CrossRef Ho-Van, K. (2017). On the outage performance of reactive relay selection in cooperative cognitive networks over Nakagami-\(m\) fading channels. Wireless Personal Communications, 96(1), 1007–1027.CrossRef
3.
Zurück zum Zitat Ho-Van, K. (2017). On the performance of maximum ratio combining in cooperative cognitive networks with proactive relay selection under channel information errors. Telecommunication Systems, 65(3), 365–376.CrossRef Ho-Van, K. (2017). On the performance of maximum ratio combining in cooperative cognitive networks with proactive relay selection under channel information errors. Telecommunication Systems, 65(3), 365–376.CrossRef
4.
Zurück zum Zitat Cao, Y., Zhao, N., Yu, F. R., Jin, M., Chen, Y., Tang, J., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE JSAC, 36(4), 905–917. Cao, Y., Zhao, N., Yu, F. R., Jin, M., Chen, Y., Tang, J., et al. (2018). Optimization or alignment: Secure primary transmission assisted by secondary networks. IEEE JSAC, 36(4), 905–917.
5.
Zurück zum Zitat Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
6.
Zurück zum Zitat Zlatanov, N., Schober, R., & Hadzi-Velkov, Z. (2017). Asymptotically optimal power allocation for energy harvesting communication networks. IEEE Transactions on Vehicular Technology, 66(8), 7286–7301.CrossRef Zlatanov, N., Schober, R., & Hadzi-Velkov, Z. (2017). Asymptotically optimal power allocation for energy harvesting communication networks. IEEE Transactions on Vehicular Technology, 66(8), 7286–7301.CrossRef
7.
Zurück zum Zitat Nguyen, B. V., Jung, H., Har, D., & Kim, K. (2018). Performance analysis of a cognitive radio network with an energy harvesting secondary transmitter under Nakagami-\(m\) fading. IEEE Access, 6, 4135–4144. Nguyen, B. V., Jung, H., Har, D., & Kim, K. (2018). Performance analysis of a cognitive radio network with an energy harvesting secondary transmitter under Nakagami-\(m\) fading. IEEE Access, 6, 4135–4144.
8.
Zurück zum Zitat Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.CrossRef
9.
Zurück zum Zitat Chen, X., Guo, L., Li, X., Dong, C., Lin, J., & Mathiopoulos, P. T. (2018). Secrecy rate optimization for cooperative cognitive radio networks aided by a wireless energy harvesting jammer. IEEE Access, 6, 34127–34134.CrossRef Chen, X., Guo, L., Li, X., Dong, C., Lin, J., & Mathiopoulos, P. T. (2018). Secrecy rate optimization for cooperative cognitive radio networks aided by a wireless energy harvesting jammer. IEEE Access, 6, 34127–34134.CrossRef
10.
Zurück zum Zitat Xu, M., Jing, T., Fan, X., Wen, Y., & Huo, Y. (2018). Secure transmission solutions in energy harvesting enabled cooperative cognitive radio networks. In Proceedings of IEEE WCNC, 15–18 April 2018, Barcelona, Spain (pp. 1–6). Xu, M., Jing, T., Fan, X., Wen, Y., & Huo, Y. (2018). Secure transmission solutions in energy harvesting enabled cooperative cognitive radio networks. In Proceedings of IEEE WCNC, 15–18 April 2018, Barcelona, Spain (pp. 1–6).
11.
Zurück zum Zitat Su, R., Wang, Y., & Sun, R. (2018). Destination-assisted jamming for physical-layer security in SWIPT cognitive radio systems. In Proceedings of IEEE WCNC, 15–18 April 2018, Barcelona, Spain (pp. 1–6). Su, R., Wang, Y., & Sun, R. (2018). Destination-assisted jamming for physical-layer security in SWIPT cognitive radio systems. In Proceedings of IEEE WCNC, 15–18 April 2018, Barcelona, Spain (pp. 1–6).
12.
Zurück zum Zitat Qiao, J., Zhang, H., Zhao, F., & Yuan, D. (2018). Secure transmission and self-energy recycling with partial eavesdropper CSI. IEEE JSAC, 36(7), 1531–1543. Qiao, J., Zhang, H., Zhao, F., & Yuan, D. (2018). Secure transmission and self-energy recycling with partial eavesdropper CSI. IEEE JSAC, 36(7), 1531–1543.
13.
Zurück zum Zitat Quang, P. M., Duy, T. T., & Bao, V. N. Q. (2016). Performance evaluation of underlay cognitive radio networks over Nakagami-\(m\) fading channels with energy harvesting. In Proceedings of International Conference on Advanced Technologies for Communications, HaNoi, Vietnam, 10–12 October 2016 (pp. 108–113). Quang, P. M., Duy, T. T., & Bao, V. N. Q. (2016). Performance evaluation of underlay cognitive radio networks over Nakagami-\(m\) fading channels with energy harvesting. In Proceedings of International Conference on Advanced Technologies for Communications, HaNoi, Vietnam, 10–12 October 2016 (pp. 108–113).
14.
Zurück zum Zitat Zhang, J., Pan, G., & Wang, H. M. (2016). On physical-layer security in underlay cognitive radio networks with full-duplex wireless-powered secondary system. IEEE Access, 4, 3887–3893.CrossRef Zhang, J., Pan, G., & Wang, H. M. (2016). On physical-layer security in underlay cognitive radio networks with full-duplex wireless-powered secondary system. IEEE Access, 4, 3887–3893.CrossRef
16.
Zurück zum Zitat Mou, W., Yang, W., Xu, X., Li, X., & Cai, Y. (2016). Secure transmission in spectrum-sharing cognitive networks with wireless power transfer. In Proceedings of international conference on wireless communications & signal processing, JiangSu, China, 13–15 October 2016 (pp. 1–5). Mou, W., Yang, W., Xu, X., Li, X., & Cai, Y. (2016). Secure transmission in spectrum-sharing cognitive networks with wireless power transfer. In Proceedings of international conference on wireless communications & signal processing, JiangSu, China, 13–15 October 2016 (pp. 1–5).
17.
Zurück zum Zitat Lei, H., Xu, M., Zhang, H., Pan, G., Ansari, I. S.,&Qaraqe, K. A. (2016). Secrecy outage performance for underlay MIMO CRNs with energy harvesting and transmit antenna selection. In Proceedings of IEEE global communications conference, Washington DC, USA, 4–8 December, 2016 (pp. 1–6). Lei, H., Xu, M., Zhang, H., Pan, G., Ansari, I. S.,&Qaraqe, K. A. (2016). Secrecy outage performance for underlay MIMO CRNs with energy harvesting and transmit antenna selection. In Proceedings of IEEE global communications conference, Washington DC, USA, 4–8 December, 2016 (pp. 1–6).
18.
Zurück zum Zitat Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Communications Letters, 5(3), 288–291.CrossRef Singh, A., Bhatnagar, M. R., & Mallik, R. K. (2016). Secrecy outage of a simultaneous wireless information and power transfer cognitive radio system. IEEE Communications Letters, 5(3), 288–291.CrossRef
19.
Zurück zum Zitat Liu, Y., Wang, L., Zaidi, S. A. R., Elkashlan, M., & Duong, T. Q. (2016). Secure D2D communication in large-scale cognitive cellular networks: A wireless power transfer model. IEEE Transactions on Communications, 64(1), 329–342.CrossRef Liu, Y., Wang, L., Zaidi, S. A. R., Elkashlan, M., & Duong, T. Q. (2016). Secure D2D communication in large-scale cognitive cellular networks: A wireless power transfer model. IEEE Transactions on Communications, 64(1), 329–342.CrossRef
20.
Zurück zum Zitat Maji, P., Roy, S. D., & Kundu, S. (2018). Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link. IET Communications, 12(11), 1389–1395.CrossRef Maji, P., Roy, S. D., & Kundu, S. (2018). Physical layer security in cognitive radio network with energy harvesting relay and jamming in the presence of direct link. IET Communications, 12(11), 1389–1395.CrossRef
21.
Zurück zum Zitat Raghuwanshi, S., Maji, P., Roy, S. D.,&Kundu, S. (2016). Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In Proceedings of international conference on advances in computing, communications and informatics, Jaipur, India, 21–24 September, 2016 (pp. 1622–1627). Raghuwanshi, S., Maji, P., Roy, S. D.,&Kundu, S. (2016). Secrecy performance of a dual hop cognitive relay network with an energy harvesting relay. In Proceedings of international conference on advances in computing, communications and informatics, Jaipur, India, 21–24 September, 2016 (pp. 1622–1627).
22.
Zurück zum Zitat Benedict, F. P., Maji, P., Roy, S. D., & Kundu, S. (2017). Secrecy analysis of a cognitive radio network with an energy harvesting AF relay. In Proceedings of IEEE WiSPNET, 22–24 March 2017, Chennai, India (pp. 1358–1363). Benedict, F. P., Maji, P., Roy, S. D., & Kundu, S. (2017). Secrecy analysis of a cognitive radio network with an energy harvesting AF relay. In Proceedings of IEEE WiSPNET, 22–24 March 2017, Chennai, India (pp. 1358–1363).
23.
Zurück zum Zitat Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRef Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.CrossRef
24.
Zurück zum Zitat Seyfi, M., Muhaidat, S., & Liang, J. (2013). Relay selection in cognitive radio networks with interference constraints. IET Communications, 7(10), 922–930.CrossRef Seyfi, M., Muhaidat, S., & Liang, J. (2013). Relay selection in cognitive radio networks with interference constraints. IET Communications, 7(10), 922–930.CrossRef
25.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy trade-off. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy trade-off. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRef
26.
Zurück zum Zitat Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef Nasir, A. A., Zhou, X., Durrani, S., & Kennedy, R. A. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.CrossRef
27.
Zurück zum Zitat Biglieri, E., Proakis, J., & Shamai, S. (1998). Fading channels: Information-theoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692.MathSciNetCrossRef Biglieri, E., Proakis, J., & Shamai, S. (1998). Fading channels: Information-theoretic and communications aspects. IEEE Transactions on Information Theory, 44(6), 2619–2692.MathSciNetCrossRef
28.
Zurück zum Zitat Ho-Van, K. (2016). Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers. Journal of Communications and Networks, 18(3), 288–298.CrossRef Ho-Van, K. (2016). Exact outage probability analysis of proactive relay selection in cognitive radio networks with MRC receivers. Journal of Communications and Networks, 18(3), 288–298.CrossRef
29.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego, CA: Academic.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego, CA: Academic.MATH
30.
Zurück zum Zitat Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for build- ing simulation models. New York, Heidelberg, Dordrecht, London: Springer.CrossRef Thomopoulos, N. T. (2013). Essentials of Monte Carlo simulation: Statistical methods for build- ing simulation models. New York, Heidelberg, Dordrecht, London: Springer.CrossRef
31.
Zurück zum Zitat Torabi, M., Ajib, W., & Haccoun, D. (2009). Performance analysis of amplify-and- forward cooperative networks with relay selection over Rayleigh fading channels. In Proceedings of IEEE vehicular technology conference, Barcelona, Spain, 26–29 April 2009 (pp. 1–5). Torabi, M., Ajib, W., & Haccoun, D. (2009). Performance analysis of amplify-and- forward cooperative networks with relay selection over Rayleigh fading channels. In Proceedings of IEEE vehicular technology conference, Barcelona, Spain, 26–29 April 2009 (pp. 1–5).
Metadaten
Titel
Eavesdropping-decoding compromise in spectrum sharing paradigm with ES-capable AF relay
verfasst von
Khuong Ho-Van
Thiem Do-Dac
Publikationsdatum
22.11.2018
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-018-1878-x

Weitere Artikel der Ausgabe 3/2020

Wireless Networks 3/2020 Zur Ausgabe

Neuer Inhalt