Skip to main content
Erschienen in: Physics of Metals and Metallography 8/2022

01.08.2022 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

EBSD Analysis of an Austenitic Cr–Ni Steel Laser Weld

verfasst von: N. B. Pugacheva, S. M. Zadvorkin, N. S. Michurov

Erschienen in: Physics of Metals and Metallography | Ausgabe 8/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of EBSD analysis of weld zones in CO2 laser-welded corrosion-resistant titanium-containing 12Kh18N10T steel sheets are presented. The structure of narrow (1.03–1.15 mm) welds has been found to be typical of cast metal. There are equiaxed grains with an average size of 40 μm in the central part of the weld and elongated grains with a maximum length of 200 μm on the sides of the weld, in the direction of active heat removal, inside which a subgrain structure is observed in EBSD images. The heat affected zone (HAZ) width is from 0.4 to 0.7 mm. The structure in the HAZ is of a recrystallized type. The misorientation inside grains is less than 2°. The grain size is from 10 to 25 µm. The weld contains a small number of deformed crystallites, which plays a positive role for the structural strength of the joint, since it ensures a low level of residual stresses and their gradients. Ultimate tensile strength of the weld is 650 MPa, which corresponds to the strength of the base metal. The results, indicating the significant role of the texture of the metal in different regions of the weld in ensuring its strength on the level of the base metal, are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Treatment of Metals (Mashinostroenie, Moscow, 1985) [in Russian]. N. N. Rykalin, A. A. Uglov, I. V. Zuev, and A. N. Kokora, Laser and Electron Beam Treatment of Metals (Mashinostroenie, Moscow, 1985) [in Russian].
2.
Zurück zum Zitat A. G. Grigor’yants and I. N. Shiganov, Laser Technics and Technology. In 7 Vols. Book 5: Laser Welding of Metals, Ed. by A. G. Grigor’yants (Vysshaya shkola, Moscow, 1988) [in Russian]. A. G. Grigor’yants and I. N. Shiganov, Laser Technics and Technology. In 7 Vols. Book 5: Laser Welding of Metals, Ed. by A. G. Grigor’yants (Vysshaya shkola, Moscow, 1988) [in Russian].
3.
Zurück zum Zitat A. M. Orishich, A. N. Cherepanov, V. P. Shapeev, and N. B. Pugacheva, Nanomodification of Welded Joints in Laser Welding of Metals and Alloys (SB RAS, Novosibirsk, 2014) [in Russian]. A. M. Orishich, A. N. Cherepanov, V. P. Shapeev, and N. B. Pugacheva, Nanomodification of Welded Joints in Laser Welding of Metals and Alloys (SB RAS, Novosibirsk, 2014) [in Russian].
4.
Zurück zum Zitat N. B. Pugacheva, D. I. Vichuzhanin, E. B. Trushina, N. P. Antenorova, N. S. Michurov, A. M. Orishich, A. N. Cherepanov, and A. G. Malikov, “Fatigue strength of laser welds in 12Kh18N10T steel,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty) 68, 89–98 (2015). N. B. Pugacheva, D. I. Vichuzhanin, E. B. Trushina, N. P. Antenorova, N. S. Michurov, A. M. Orishich, A. N. Cherepanov, and A. G. Malikov, “Fatigue strength of laser welds in 12Kh18N10T steel,” Obrabotka Metallov (Tekhnologiya, Oborudovanie, Instrumenty) 68, 89–98 (2015).
5.
Zurück zum Zitat R. A. Schwarzer, D. P. Field, B. L. Adams, M. Kumar, and A. J. Schwartz, “Present state of electron backscatter diffraction and prospective developments,” in Electron Backscatter Diffr. Mater. Sci. (Springer, Boston, 2009), pp. 1–20. R. A. Schwarzer, D. P. Field, B. L. Adams, M. Kumar, and A. J. Schwartz, “Present state of electron backscatter diffraction and prospective developments,” in Electron Backscatter Diffr. Mater. Sci. (Springer, Boston, 2009), pp. 1–20.
6.
Zurück zum Zitat V. N. Varyukhin, E. G. Pashinskaya, A. V. Zavdoveev, and V. V. Burkhovetskii, Possibilities of the Backscattered Electron Diffraction Method for Analyzing the Structure of Deformed Materials (Naukova dumka, Kiev, 2014) [in Russian]. V. N. Varyukhin, E. G. Pashinskaya, A. V. Zavdoveev, and V. V. Burkhovetskii, Possibilities of the Backscattered Electron Diffraction Method for Analyzing the Structure of Deformed Materials (Naukova dumka, Kiev, 2014) [in Russian].
7.
Zurück zum Zitat H. L. Wei, J. W. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).CrossRef H. L. Wei, J. W. Elmer, and T. DebRoy, “Crystal growth during keyhole mode laser welding,” Acta Mater. 133, 10–20 (2017).CrossRef
8.
Zurück zum Zitat Z. Qin and Y. Xia, “Role of strain-indused martensitic phase transformation in mechanical response of 304L steel at different strsinsrstes and temperatures,” J. Mater. Process. Technol. 280, 116613 (2020).CrossRef Z. Qin and Y. Xia, “Role of strain-indused martensitic phase transformation in mechanical response of 304L steel at different strsinsrstes and temperatures,” J. Mater. Process. Technol. 280, 116613 (2020).CrossRef
9.
Zurück zum Zitat T. R. Smith, J. D. Sugar, C. S. Marchi, and J. M. Schoenung, “Strengthening mechanisms in directed energy deposited austenitic stainless steel,” Acta Mater. 164, 728–740 (2019).CrossRef T. R. Smith, J. D. Sugar, C. S. Marchi, and J. M. Schoenung, “Strengthening mechanisms in directed energy deposited austenitic stainless steel,” Acta Mater. 164, 728–740 (2019).CrossRef
10.
Zurück zum Zitat M. H. Razmpoosh, A. Macwan, E. Biro, and Y. Zhou, “Microstructure and dynamic tensile characteristics of dissimilar fiber laser welded advanced high strength steels,” Mater. Sci. Eng., A 773, 138729 (2020).CrossRef M. H. Razmpoosh, A. Macwan, E. Biro, and Y. Zhou, “Microstructure and dynamic tensile characteristics of dissimilar fiber laser welded advanced high strength steels,” Mater. Sci. Eng., A 773, 138729 (2020).CrossRef
11.
Zurück zum Zitat F. Tӧlle, A. Gumentk, A. Dackhaus, S. Olschok, M. Rethmeier, and U. Reisgen, “Welding residual stress reduction by scanning of defocused beam,” J. Mater. Process. Technol. 212, 19–26 (2012).CrossRef F. Tӧlle, A. Gumentk, A. Dackhaus, S. Olschok, M. Rethmeier, and U. Reisgen, “Welding residual stress reduction by scanning of defocused beam,” J. Mater. Process. Technol. 212, 19–26 (2012).CrossRef
12.
Zurück zum Zitat I. A. Birger, Residual Stresses (Mashgiz, Moscow, 1963) [in Russian]. I. A. Birger, Residual Stresses (Mashgiz, Moscow, 1963) [in Russian].
13.
Zurück zum Zitat G. L. Kolmogorov, E. V. Kuznetsov, and V. V. Tiunov, Technological Residual Stresses and their Influence on the Durability and Reliability of Metal Products (PNIPU, Perm, 2012) [in Russian]. G. L. Kolmogorov, E. V. Kuznetsov, and V. V. Tiunov, Technological Residual Stresses and their Influence on the Durability and Reliability of Metal Products (PNIPU, Perm, 2012) [in Russian].
14.
Zurück zum Zitat G. N. Chernyshev, A. L. Popov, and V. M. Kozintsev, “Useful and dangerous residual stresses,” Priroda, No. 10, 17–24 (2002). G. N. Chernyshev, A. L. Popov, and V. M. Kozintsev, “Useful and dangerous residual stresses,” Priroda, No. 10, 17–24 (2002).
15.
Zurück zum Zitat N. N. Davidenkov, “On the residual stresses,” Zavod. Lab., No. 6, 688–693 (1935). N. N. Davidenkov, “On the residual stresses,” Zavod. Lab., No. 6, 688–693 (1935).
16.
Zurück zum Zitat E. S. Gorkunov, S. M. Zadvorkin and L. S. Goruleva, “Specific features of the determination of residual stresses in materials by diffraction techniques,” AIP Conf. Proc. 1915, 030006 (2017).CrossRef E. S. Gorkunov, S. M. Zadvorkin and L. S. Goruleva, “Specific features of the determination of residual stresses in materials by diffraction techniques,” AIP Conf. Proc. 1915, 030006 (2017).CrossRef
17.
Zurück zum Zitat S. M. Zadvorkin and L. S. Goruleva, “Assessment of residual stresses in steel products by magnetic methods,” Problemy Mashinostroe-Niya i Nadezhnosti Mashin, No. 2, 33–51 (2021). S. M. Zadvorkin and L. S. Goruleva, “Assessment of residual stresses in steel products by magnetic methods,” Problemy Mashinostroe-Niya i Nadezhnosti Mashin, No. 2, 33–51 (2021).
18.
Zurück zum Zitat T. Ekobori, Physics and Mechanics of Destruction and Strength of Solids (Metallurgiya, Moscow, 1971) [in Russian]. T. Ekobori, Physics and Mechanics of Destruction and Strength of Solids (Metallurgiya, Moscow, 1971) [in Russian].
19.
Zurück zum Zitat A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High resolution elastic strain measurement from electron backscatter diffraction hatterns: New levels of sensitivity,” Ultramicroscopy 106, 303–313 (2006).CrossRef A. J. Wilkinson, G. Meaden, and D. J. Dingley, “High resolution elastic strain measurement from electron backscatter diffraction hatterns: New levels of sensitivity,” Ultramicroscopy 106, 303–313 (2006).CrossRef
20.
Zurück zum Zitat A. E. Davis, J. R. Honnige, F. Martina, and P. B. Prangnell, “Quantifcation of strain felds and grain refnement in Ti–6Al–4V inter-passrolled wire-arc AM by EBSD misorientation analysis,” Mater. Charact. 170, 110673 (2020).CrossRef A. E. Davis, J. R. Honnige, F. Martina, and P. B. Prangnell, “Quantifcation of strain felds and grain refnement in Ti–6Al–4V inter-passrolled wire-arc AM by EBSD misorientation analysis,” Mater. Charact. 170, 110673 (2020).CrossRef
21.
Zurück zum Zitat A. Arsenlis and D. Parks, “Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density,” Acta Mater. 47, 1597–1611 (1999).CrossRef A. Arsenlis and D. Parks, “Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density,” Acta Mater. 47, 1597–1611 (1999).CrossRef
22.
Zurück zum Zitat M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh, “Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction,” Acta Mater. 54, 539–548 (2006).CrossRef M. Kamaya, A. J. Wilkinson, and J. M. Titchmarsh, “Quantification of plastic strain of stainless steel and nickel alloy by electron backscatter diffraction,” Acta Mater. 54, 539–548 (2006).CrossRef
23.
Zurück zum Zitat C. Maerice and R. Fortuner, “A 3D Hough transform for indexing EBSD and Kossel patterns,” J. Microsc. 230, 520–529 (2008).CrossRef C. Maerice and R. Fortuner, “A 3D Hough transform for indexing EBSD and Kossel patterns,” J. Microsc. 230, 520–529 (2008).CrossRef
24.
Zurück zum Zitat A. A. Rusakov, X-ray Diffraction Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian]. A. A. Rusakov, X-ray Diffraction Analysis of Metals (Atomizdat, Moscow, 1977) [in Russian].
25.
Zurück zum Zitat Tables of Physical Values. Handbook, Ed. by I. K. Kikoin (Atomizdat, 1976, Moscow, 1009) [in Russian]. Tables of Physical Values. Handbook, Ed. by I. K. Kikoin (Atomizdat, 1976, Moscow, 1009) [in Russian].
26.
Zurück zum Zitat E. F. Sil’nikov and M. V. Sil’nikov, Crystallographic Texture and Texture Formation (Nauka, St. Petersburg, 2011) [in Russian]. E. F. Sil’nikov and M. V. Sil’nikov, Crystallographic Texture and Texture Formation (Nauka, St. Petersburg, 2011) [in Russian].
27.
Zurück zum Zitat M. M. Borodkina and E. N. Spektor, X-ray Diffraction Analysis of Texture of Metals and Alloys (Metallurgiya, Moscow, 1981) [in Russian]. M. M. Borodkina and E. N. Spektor, X-ray Diffraction Analysis of Texture of Metals and Alloys (Metallurgiya, Moscow, 1981) [in Russian].
28.
Zurück zum Zitat G. P. Anastasiadi and M. V. Sil’nikov, Non-homogeneity and Operability of Steel (Poligon, St. Petersburg, 2002) [in Russian]. G. P. Anastasiadi and M. V. Sil’nikov, Non-homogeneity and Operability of Steel (Poligon, St. Petersburg, 2002) [in Russian].
Metadaten
Titel
EBSD Analysis of an Austenitic Cr–Ni Steel Laser Weld
verfasst von
N. B. Pugacheva
S. M. Zadvorkin
N. S. Michurov
Publikationsdatum
01.08.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 8/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22080087

Weitere Artikel der Ausgabe 8/2022

Physics of Metals and Metallography 8/2022 Zur Ausgabe