Skip to main content

2017 | OriginalPaper | Buchkapitel

ECG Annotation and Diagnosis Classification Techniques

verfasst von : Yan Yan, Xingbin Qin, Lei Wang

Erschienen in: Health Informatics Data Analysis

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ECG annotation has been studied for decades for the development of signal processing techniques and artificial intelligence methods. In this chapter, the general technique roadmaps of ECG beat annotation (classification) are reviewed. The deep neuro network methods are introduced after the mention of supervised and unsupervised learning methods as well as the deep belief networks. A preliminary study on deep learning application in ECG classification is proposed in this chapter, which leads to better results and has a high potential both for performance improvement and unsupervised learning applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
“ecgpuwave”, check the website of Physionet.
 
Literatur
1.
Zurück zum Zitat H. Ai, X. Cui, L. Tang, W. Zhu, X. Ning, X. Yang, Studies on the time domain and power spectrum of high frequency ecg in normal mice. Sheng li xue bao: [Acta Physiol. Sin.] 48(5), 512–516 (1996) H. Ai, X. Cui, L. Tang, W. Zhu, X. Ning, X. Yang, Studies on the time domain and power spectrum of high frequency ecg in normal mice. Sheng li xue bao: [Acta Physiol. Sin.] 48(5), 512–516 (1996)
2.
Zurück zum Zitat R.V. Andreao, B. Dorizzi, J. Boudy, ECG signal analysis through hidden markov models. IEEE Trans. Biomed. Eng. 53(8), 1541–1549 (2006)CrossRef R.V. Andreao, B. Dorizzi, J. Boudy, ECG signal analysis through hidden markov models. IEEE Trans. Biomed. Eng. 53(8), 1541–1549 (2006)CrossRef
3.
Zurück zum Zitat G. Andrew, J. Gao, Scalable training of l 1-regularized log-linear models, in Proceedings of the 24th International Conference on Machine learning (ACM, 2007), pp. 33–40 G. Andrew, J. Gao, Scalable training of l 1-regularized log-linear models, in Proceedings of the 24th International Conference on Machine learning (ACM, 2007), pp. 33–40
4.
Zurück zum Zitat S. Banerjee, M. Mitra, Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRef S. Banerjee, M. Mitra, Application of cross wavelet transform for ECG pattern analysis and classification. IEEE Trans. Instrum. Meas. 63(2), 326–333 (2014)CrossRef
6.
Zurück zum Zitat Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., Greedy layer-wise training of deep networks. Adv. Neural. Inf. Process. Syst. 19, 153 (2007) Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., Greedy layer-wise training of deep networks. Adv. Neural. Inf. Process. Syst. 19, 153 (2007)
7.
Zurück zum Zitat J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity. Syst. Man Cybern. Part B IEEE Trans. Cybern. 28(3), 301–315 (1998)CrossRef J.C. Bezdek, N.R. Pal, Some new indexes of cluster validity. Syst. Man Cybern. Part B IEEE Trans. Cybern. 28(3), 301–315 (1998)CrossRef
8.
Zurück zum Zitat C.M. Bishop et al., Pattern recognition and machine learning, vol. 4 (Springer, New York, 2006)MATH C.M. Bishop et al., Pattern recognition and machine learning, vol. 4 (Springer, New York, 2006)MATH
9.
Zurück zum Zitat M. Blanco-Velasco, B. Weng, K.E. Barner, Ecg signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1), 1–13 (2008)CrossRef M. Blanco-Velasco, B. Weng, K.E. Barner, Ecg signal denoising and baseline wander correction based on the empirical mode decomposition. Comput. Biol. Med. 38(1), 1–13 (2008)CrossRef
10.
Zurück zum Zitat L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT’2010 (Springer, 2010), pp. 177–186 L. Bottou, Large-scale machine learning with stochastic gradient descent, in Proceedings of COMPSTAT’2010 (Springer, 2010), pp. 177–186
11.
Zurück zum Zitat M.A. Carreira-Perpinan, G.E. Hinton, On contrastive divergence learning, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (Citeseer, 2005), pp. 33–40 M.A. Carreira-Perpinan, G.E. Hinton, On contrastive divergence learning, in Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (Citeseer, 2005), pp. 33–40
12.
Zurück zum Zitat F. Charfi, A. Kraiem, Comparative study of ecg classification performance using decision tree algorithms. Int. J. E-Health Med. Commun. (IJEHMC) 3(4), 102–120 (2012)CrossRef F. Charfi, A. Kraiem, Comparative study of ecg classification performance using decision tree algorithms. Int. J. E-Health Med. Commun. (IJEHMC) 3(4), 102–120 (2012)CrossRef
13.
Zurück zum Zitat P. Chazal, M. O’Dwyer, R. Reilly, Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRef P. Chazal, M. O’Dwyer, R. Reilly, Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRef
15.
Zurück zum Zitat G.D. Clifford, F. Azuaje, P. McSharry et al., Advanced methods and tools for ECG data analysis (Artech House, Boston, 2006) G.D. Clifford, F. Azuaje, P. McSharry et al., Advanced methods and tools for ECG data analysis (Artech House, Boston, 2006)
16.
Zurück zum Zitat R. Collobert, J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in Proceedings of the 25th International Conference on Machine Learning (ACM, 2008), pp. 160–167 R. Collobert, J. Weston, A unified architecture for natural language processing: deep neural networks with multitask learning, in Proceedings of the 25th International Conference on Machine Learning (ACM, 2008), pp. 160–167
17.
Zurück zum Zitat P. De Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRef P. De Chazal, M. O’Dwyer, R.B. Reilly, Automatic classification of heartbeats using ecg morphology and heartbeat interval features. IEEE Trans. Biomed. Eng. 51(7), 1196–1206 (2004)CrossRef
18.
Zurück zum Zitat R.O. Duda, P.E. Hart, D.G. Stork, Pattern classification. Wiley (2012) R.O. Duda, P.E. Hart, D.G. Stork, Pattern classification. Wiley (2012)
19.
Zurück zum Zitat M. Engin, ECG beat classification using neuro-fuzzy network. Pattern Recogn. Lett. 25(15), 1715–1722 (2004) M. Engin, ECG beat classification using neuro-fuzzy network. Pattern Recogn. Lett. 25(15), 1715–1722 (2004)
20.
Zurück zum Zitat D. Erhan, P.A. Manzagol, Y. Bengio, S. Bengio, P. Vincent, The difficulty of training deep architectures and the effect of unsupervised pre-training, in International Conference on Artificial Intelligence and Statistics, pp. 153–160 (2009) D. Erhan, P.A. Manzagol, Y. Bengio, S. Bengio, P. Vincent, The difficulty of training deep architectures and the effect of unsupervised pre-training, in International Conference on Artificial Intelligence and Statistics, pp. 153–160 (2009)
21.
Zurück zum Zitat A. Fischer, C. Igel, An introduction to restricted boltzmann machines, in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Springer, 2012), pp. 14–36 A. Fischer, C. Igel, An introduction to restricted boltzmann machines, in Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications (Springer, 2012), pp. 14–36
22.
Zurück zum Zitat A. Gacek, W. Pedrycz, A genetic segmentation of ECG signals. IEEE Trans. Biomed. Eng. 50(10), 1203–1208 (2003)CrossRef A. Gacek, W. Pedrycz, A genetic segmentation of ECG signals. IEEE Trans. Biomed. Eng. 50(10), 1203–1208 (2003)CrossRef
23.
Zurück zum Zitat A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRef A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)CrossRef
24.
Zurück zum Zitat G. Hinton, Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)CrossRefMATH G. Hinton, Training products of experts by minimizing contrastive divergence. Neural Comput. 14(8), 1771–1800 (2002)CrossRefMATH
25.
Zurück zum Zitat G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefMATH G.E. Hinton, R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefMATH
26.
Zurück zum Zitat M.R. Homaeinezhad, S. Atyabi, E. Tavakkoli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-svm–knn hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)CrossRef M.R. Homaeinezhad, S. Atyabi, E. Tavakkoli, H.N. Toosi, A. Ghaffari, R. Ebrahimpour, ECG arrhythmia recognition via a neuro-svm–knn hybrid classifier with virtual QRS image-based geometrical features. Expert Syst. Appl. 39(2), 2047–2058 (2012)CrossRef
27.
Zurück zum Zitat W. Jiang, S. Kong, Block-based neural networks for personalized ecg signal classification. IEEE Trans. Neural Networks 18(6), 1750–1761 (2007)CrossRef W. Jiang, S. Kong, Block-based neural networks for personalized ecg signal classification. IEEE Trans. Neural Networks 18(6), 1750–1761 (2007)CrossRef
28.
Zurück zum Zitat V. Krasteva, R. Leber, I. Jekova, R. Schmid, R. Abacherli, Classification of supraventricular and ventricular beats by QRS template matching and decision tree, in Computing in Cardiology Conference (CinC) (IEEE, 2014), pp. 349–352 V. Krasteva, R. Leber, I. Jekova, R. Schmid, R. Abacherli, Classification of supraventricular and ventricular beats by QRS template matching and decision tree, in Computing in Cardiology Conference (CinC) (IEEE, 2014), pp. 349–352
29.
Zurück zum Zitat M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. S¨ornmo, Clustering ECG complexes using hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000) M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, L. S¨ornmo, Clustering ECG complexes using hermite functions and self-organizing maps. IEEE Trans. Biomed. Eng. 47(7), 838–848 (2000)
30.
Zurück zum Zitat D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)MathSciNetCrossRefMATH D.C. Liu, J. Nocedal, On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)MathSciNetCrossRefMATH
31.
Zurück zum Zitat T. Mar, S. Zaunseder, J.P. Martinez, M. Llamedo, R. Poll, Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 58(8), 2168–2177 (2011)CrossRef T. Mar, S. Zaunseder, J.P. Martinez, M. Llamedo, R. Poll, Optimization of ECG classification by means of feature selection. IEEE Trans. Biomed. Eng. 58(8), 2168–2177 (2011)CrossRef
32.
Zurück zum Zitat R. Mark, P. Schluter, G. Moody, P. Devlin, D. Chernoff, An annotated ecg database for evaluating arrhythmia detectors. IEEE Trans. Biomed. Eng. 29, 600–600 (1982) R. Mark, P. Schluter, G. Moody, P. Devlin, D. Chernoff, An annotated ecg database for evaluating arrhythmia detectors. IEEE Trans. Biomed. Eng. 29, 600–600 (1982)
33.
Zurück zum Zitat F. Melgani, Y. Bazi, Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12(5), 667–677 (2008). doi:10.1109/TITB.2008.923147 CrossRef F. Melgani, Y. Bazi, Classification of electrocardiogram signals with support vector machines and particle swarm optimization. IEEE Trans. Inf. Technol. Biomed. 12(5), 667–677 (2008). doi:10.​1109/​TITB.​2008.​923147 CrossRef
34.
Zurück zum Zitat K. Minami, H. Nakajima, T. Toyoshima, Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Trans. Biomed. Eng. 46(2), 179–185 (1999)CrossRef K. Minami, H. Nakajima, T. Toyoshima, Real-time discrimination of ventricular tachyarrhythmia with fourier-transform neural network. IEEE Trans. Biomed. Eng. 46(2), 179–185 (1999)CrossRef
35.
Zurück zum Zitat G.B. Moody, R.G. Mark, The mit-bih arrhythmia database on CD-ROM and software for use with it, in Proceedings Computers in Cardiology, pp. 185–188 (1990) G.B. Moody, R.G. Mark, The mit-bih arrhythmia database on CD-ROM and software for use with it, in Proceedings Computers in Cardiology, pp. 185–188 (1990)
37.
Zurück zum Zitat J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, A.Y. Ng, On optimization methods for deep learning, in Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp 265–272 (2011) J. Ngiam, A. Coates, A. Lahiri, B. Prochnow, Q.V. Le, A.Y. Ng, On optimization methods for deep learning, in Proceedings of the 28th International Conference on Machine Learning (ICML-11), pp 265–272 (2011)
38.
Zurück zum Zitat S. Osowski, T.H. Linh, ECG beat recognition using fuzzy hybrid neural network. IEEE Trans.Biomed. Eng. 48(11), 1265–1271 (2001)CrossRef S. Osowski, T.H. Linh, ECG beat recognition using fuzzy hybrid neural network. IEEE Trans.Biomed. Eng. 48(11), 1265–1271 (2001)CrossRef
39.
Zurück zum Zitat C.Y.J. Peng, K.L. Lee, G.M. Ingersoll, An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002) C.Y.J. Peng, K.L. Lee, G.M. Ingersoll, An introduction to logistic regression analysis and reporting. J. Educ. Res. 96(1), 3–14 (2002)
40.
Zurück zum Zitat J.L. Rodriguez-Sotelo, D. Peluffo-Ordonez, D. Cuesta-Frau, G. Castellanos-Dominguez, Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012) J.L. Rodriguez-Sotelo, D. Peluffo-Ordonez, D. Cuesta-Frau, G. Castellanos-Dominguez, Unsupervised feature relevance analysis applied to improve ECG heartbeat clustering. Comput. Methods Programs Biomed. 108(1), 250–261 (2012)
41.
Zurück zum Zitat O. Sayadi, M. Shamsollahi, A model-based bayesian framework for ECG beat segmentation. Physiol. Meas. 30(3), 335 (2009)CrossRef O. Sayadi, M. Shamsollahi, A model-based bayesian framework for ECG beat segmentation. Physiol. Meas. 30(3), 335 (2009)CrossRef
42.
Zurück zum Zitat J. Schmidhuber, Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)CrossRef J. Schmidhuber, Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)CrossRef
43.
Zurück zum Zitat M.F. Shinwari, N. Ahmed, H. Humayun, I. ul Haq, S. Haider, A. ul Anam, Classification algorithm for feature extraction using linear discriminant analysis and cross-correlation on ECG signals. Int. J. Adv. Sci. Technol. 48, 149–161 (2012) M.F. Shinwari, N. Ahmed, H. Humayun, I. ul Haq, S. Haider, A. ul Anam, Classification algorithm for feature extraction using linear discriminant analysis and cross-correlation on ECG signals. Int. J. Adv. Sci. Technol. 48, 149–161 (2012)
44.
Zurück zum Zitat R. Silipo, G. Bortolan, C. Marchesi, Supervised and unsupervised learning for diagnostic ECG classification, in: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol. 3 (IEEE, 1996), pp. 931–932 R. Silipo, G. Bortolan, C. Marchesi, Supervised and unsupervised learning for diagnostic ECG classification, in: Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, vol. 3 (IEEE, 1996), pp. 931–932
45.
Zurück zum Zitat C.V. Silva, A. Philominraj, C. del Rio, A DSP Practical Application: Working on ECG Signal. INTECH Open Access Publisher (2011) C.V. Silva, A. Philominraj, C. del Rio, A DSP Practical Application: Working on ECG Signal. INTECH Open Access Publisher (2011)
46.
Zurück zum Zitat P. Tadejko, W. Rakowski, Hybrid wavelet-mathematical morphology feature extraction for heartbeat classification, in EUROCON, 2007. The International Conference on “Computer as a Tool” (IEEE, 2007), pp. 127–132 P. Tadejko, W. Rakowski, Hybrid wavelet-mathematical morphology feature extraction for heartbeat classification, in EUROCON, 2007. The International Conference on “Computer as a Tool” (IEEE, 2007), pp. 127–132
47.
Zurück zum Zitat E.D. Übeyli, ECG beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Process. 17(3), 675–684 (2007) E.D. Übeyli, ECG beats classification using multiclass support vector machines with error correcting output codes. Digit. Signal Process. 17(3), 675–684 (2007)
48.
Zurück zum Zitat M. Vafaie, M. Ataei, H. Koofigar, Heart diseases prediction based on ECG signals classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control 14, 291–296 (2014)CrossRef M. Vafaie, M. Ataei, H. Koofigar, Heart diseases prediction based on ECG signals classification using a genetic-fuzzy system and dynamical model of ECG signals. Biomed. Signal Process. Control 14, 291–296 (2014)CrossRef
49.
Zurück zum Zitat L. Vanitha, G. Suresh, Hybrid svm classification technique to detect mental stress in human beings using ECG signals. In: 2013 International Conference on Advanced Computing and Communication Systems (ICACCS) (IEEE, 2013), pp. 1–6 L. Vanitha, G. Suresh, Hybrid svm classification technique to detect mental stress in human beings using ECG signals. In: 2013 International Conference on Advanced Computing and Communication Systems (ICACCS) (IEEE, 2013), pp. 1–6
50.
Zurück zum Zitat H. Vullings, M. Verhaegen, H.B. Verbruggen, ECG segmentation using timewarping, in Advances in Intelligent Data Analysis Reasoning about Data (Springer, 1997), pp. 275–285 H. Vullings, M. Verhaegen, H.B. Verbruggen, ECG segmentation using timewarping, in Advances in Intelligent Data Analysis Reasoning about Data (Springer, 1997), pp. 275–285
51.
Zurück zum Zitat H. Vullings, M. Verhaegen, H. Verbruggen, Automated ECG segmentation with dynamic time warping. In: Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE (IEEE, 1998), pp. 163–166 H. Vullings, M. Verhaegen, H. Verbruggen, Automated ECG segmentation with dynamic time warping. In: Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE (IEEE, 1998), pp. 163–166
52.
Zurück zum Zitat C. Ye, B.V. Kumar, M.T. Coimbra, Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)CrossRef C. Ye, B.V. Kumar, M.T. Coimbra, Heartbeat classification using morphological and dynamic features of ECG signals. IEEE Trans. Biomed. Eng. 59(10), 2930–2941 (2012)CrossRef
53.
Zurück zum Zitat Y.C. Yeh, C.W. Chiou, H.J. Lin, Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Syst. Appl. 39(1), 1000–1010 (2012)CrossRef Y.C. Yeh, C.W. Chiou, H.J. Lin, Analyzing ECG for cardiac arrhythmia using cluster analysis. Expert Syst. Appl. 39(1), 1000–1010 (2012)CrossRef
54.
Zurück zum Zitat Y. Zigel, A. Cohen, A. Katz, The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11), 1422–1430 (2000)CrossRef Y. Zigel, A. Cohen, A. Katz, The weighted diagnostic distortion (WDD) measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11), 1422–1430 (2000)CrossRef
55.
Zurück zum Zitat W. Zou, S. Zhu, K. Yu, A.Y. Ng, Deep learning of invariant features via simulated fixations in video, in Advances in Neural Information Processing Systems, pp. 3212–3220 (2012) W. Zou, S. Zhu, K. Yu, A.Y. Ng, Deep learning of invariant features via simulated fixations in video, in Advances in Neural Information Processing Systems, pp. 3212–3220 (2012)
Metadaten
Titel
ECG Annotation and Diagnosis Classification Techniques
verfasst von
Yan Yan
Xingbin Qin
Lei Wang
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-44981-4_9